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Abstract. Biomass is an important variable for our understanding of
the terrestrial carbon cycle, facilitating the need for satellite-based global
and continuous monitoring. However, current machine learning methods
used to map biomass can often not model the complex relationship be-
tween biomass and satellite observations or cannot account for the esti-
mation’s uncertainty. In this work, we exploit the stochastic properties
of Conditional Generative Adversarial Networks for quantifying aleatoric
uncertainty. Furthermore, we use generator Snapshot Ensembles in the
context of epistemic uncertainty and show that unlabeled data can easily
be incorporated into the training process. The methodology is tested on
a newly presented dataset for satellite-based estimation of biomass from
multispectral and radar imagery, using lidar-derived maps as reference
data. The experiments show that the final network ensemble captures
the dataset’s probabilistic characteristics, delivering accurate estimates
and well-calibrated uncertainties.

1 Introduction

An ever-growing number of satellite missions produce vast amounts of remote
sensing data, providing us with unprecedented opportunities to continuously
monitor processes on the Earth’s surface. Extracting quantitative geoscientific
information from these data requires functional models between the observa-
tions l and geographical variables of interest x. To this end, deep learning meth-
ods based on neural networks have recently established themselves due to their
demonstrated capabilities to learn complex relationships. For applications like
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Fig. 1. Graphical summary of our methodology during inference. The observations l
are fed into multiple generator neural networks along with the latent codes z. The
sample estimates x∗ from each generator represent individual estimates of the predic-
tive posterior distribution and hence, aleatoric uncertainty. The variability across the
generator ensemble, on the other hand is indicative of epistemic uncertainty.

satellite-based biomass estimation, however, the inability of such methods to
provide uncertainties along with their estimates represents a crucial flaw. The
reason is that this problem, like many others in the field of Earth Observation, is
ill-posed in the sense that there exist multiple biomass maps which are consistent
with the observations. Particularly, this is due to latent variables, like tree height
or tree species, which are only weakly correlated to satellite measurements but
have substantial influence on biomass. This causes ambiguity, and hence, uncer-
tainty in the estimation. While this property of our estimation task is ignored by
deterministic models, probabilistic models circumvent this problem by approx-
imating the conditional predictive posterior P (x|l) instead of point estimates.
By focusing on the task of accurately approximating the predictive posterior
distribution, we hope to improve the informative value of the resulting biomass
products for policymaking, modeling of the carbon cycle, or other downstream
applications.

In summary, we make the following contributions:

1. We motivate and describe the usage of Conditional Generative Adversarial
Networks (CGANs) for non-parametric uncertainty quantification in biomass
estimation. We point out that the variablility across generated sample esti-
mates x∗ is indicative of the dataset’s intrinsic aleatoric uncertainty, as they
follow the generator’s approximation of the predictive posterior distribution.

2. We use ensembles of generator networks for capturing the epistemic uncer-
tainty of CGANs, which is largely associated with instabilities of the ad-
versarial training process. In this context, Snapshot Ensembles consisting



Probabilistic Biomass estimation with CGANs 3

of generators from the same network initialization turn out to be a valid,
computationally inexpensive alternative to regular ensembles.

3. We show that we can use CWGANs to easily include unlabeled data in the
training process. We exploit this property to fine-tune our network to the
testing data.

4. We apply an implementation of our model to a novel remote sensing dataset
for satellite-based biomass estimation in Northwestern USA, evaluate it re-
garding the quality of the estimated predictive posterior, and show that it
does not negatively affect estimation accuracy.

2 Related Work

Uncertainty Quantification in Deep Learning. Since the need for reliable and
accurate uncertainty measures is not limited to problems in remote sensing, the
field of probabilistic deep learning has evolved rapidly in recent years. An essen-
tial distinction in this context is between aleatoric and epistemic uncertainty:
Aleatoric uncertainty is caused by the nature of the data or the underlying
problem and therefore cannot be explained away, even if infinitely many train-
ing samples were available. It is therefore also an intrinsic property of ill-posed
problems, where the target variable cannot be recovered from the given obser-
vations in a deterministic sense [47]. On the contrary, epistemic uncertainty is
caused by limitations regarding the dataset size, the neural network’s architec-
ture, or the optimization strategy. Therefore, this type of uncertainty can at
least partly be reduced by, e.g. enlarging the dataset, specifying a more fitting
architecture, or hyperparameter tuning [13,18].

For quantifying aleatoric uncertainty, multi-head neural networks, which out-
put a parameterization of the predictive posterior – such as the mean and vari-
ance of a Gaussian distribution – have emerged as the favored technique [37].
The downside to such models is their limitation to the assumed parameteriza-
tion and the resulting inability to represent the more varied predictive poste-
riors, which are present in real-world applications. A possible alternative is to
have the neural network output distribution-free predictive intervals [39]. While
this circumvents the problem of specifying a parameterization of the predictive
posterior, such networks still only output individual statistics thereof so that the
estimation of other moments is not possible.

One of the most popular techniques for the quantification of epistemic un-
certainty, on the other hand, is ensembling where the estimation is aggregated
from multiple independent neural networks [23]. Alternatives include explicitly
Bayesian methods like Monte-Carlo Dropout, where dropout is applied during
training and during inference [12], and Hamiltonian Monte Carlo, where pa-
rameter hypotheses are sampled by means of Markov Chain Monte Carlo and
Hamiltonian dynamics [36].

Recently, multiple studies have also used CGANs and other conditional deep
generative models for uncertainty quantification. Those models’ suitability for
the task is motivated by their demonstrated ability to approximate highly com-
plex (conditional) probability distributions, such as that of natural images [14,34].
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In this context, the variability in the samples generated during inference is viewed
as indicative of the estimation uncertainty, as they follow the approximate pre-
dictive posterior distribution. For instance, CGANs have been applied to regres-
sion and classification tasks and were observed to produce reliable uncertainties
while being more stable with respect to the backbone architecture than compet-
ing methods [27]. The technique has been especially popular in the time series
domain [21], where it has been used for tasks like weather fore- and nowcasting
[6,40] or pedestrian [22] and aircraft [38] trajectory prediction. In traditional re-
gression settings, CGANs have been employed, e.g. for uncertainty quantification
in medical imaging [1] and atmospheric remote sensing [28].

Biomass Estimation with Remote Sensing. As one of the World Meteorological
Organization (WMO)’s Essential Climate Variables, large-scale and continuous
estimation of biomass with satellite remote sensing is important to climate sci-
entists and policymakers [16]. Particularly, we are interested in Aboveground
Biomass (AGB), which by definition of the United Nations Program on Reduc-
ing Emissions from Deforestation and Forest Degradation (UN-REDD), AGB
denotes all “living vegetation above the soil, including stem, stump, branches,
bark, seeds, and foliage” [5]. Note that hereinafter, we will use the terms biomass
and AGB interchangeably. The estimation of AGB from satellite data is less cost-
and labor-intensive than obtaining ground data, but poses significant challenges
due to the ill-posed nature of the problem [41].

Methodologically, classical regression techniques are still commonplace in the
field of biomass estimation. These range from simple linear regression [43] to
geostatistical approaches [31]. Currently, random forest regression ranks among
the most popular methodologies, as they turn out to be efficient, intuitive, and
not significantly more inaccurate than competing methods [29,35].

Recently, however, deep learning techniques have been used with increased
frequency for biomass estimation and related tasks. For instance, neural networks
were shown to better estimate biomass from Landsat data than univariate re-
gression approaches with common vegetation indices as inputs [11]. The method
was subsequently investigated in light of its spatial transferability, revealing its
poor generalization capabilities [10]. Significant advances in the field were the
fusion of optical imagery with Synthetic Aperture Radar (SAR) data in a deep
learning-based estimation approach [2] and the use of Convolutional Neural Net-
works (CNNs), which can better extract information from spatial patterns in the
data [8]. By taking into account textural properties of the input data, CNNs have
been demonstrated to especially improve estimation of vegetation properties in
cases where the pixel-wise signal saturates in the presence of tall canopies [25].
Methods from probabilistic deep learning have only recently been explored for
global estimation of canopy height, which is strongly correlated to biomass, using
optical and spaceborne lidar data in an ensemble of multi-head networks [24,25].
In another recent work, CGANs are used to estimate spatially consistent biomass
maps based on L-band SAR imagery [7]. Despite apparent similarities, this work
significantly differs from ours, as the CGANs are only used deterministically and
their stochastic possibilities are thus not fully exploited.
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3 Methodology

We generally consider a supervised regression setup with a dataset of pairs of
observations l and corresponding target variables x. Our approach consists of
using CGANs for aleatoric uncertainty and generator Snapshot Ensembles for
epistemic uncertainty. In this chapter, we will describe these two methods in
detail and point out their advantages with respect to our task. Note that, for
clarity, we will not explicitly distinguish between random variables and their
realizations in our notation.

3.1 CGANs and Aleatoric Uncertainty

For quantifying aleatoric uncertainty, we first assume that the given samples are
realizations of the conditional distribution P (x|l), which is called the predictive
posterior. We furthermore assume that aleatoric uncertainty is induced by the
latent variable z, for which a simple prior like a standard normal distribution
P (z) = N0,1l is assumed. We may view this variable as an encoding of all factors
which influence x, but are inaccessible through l. In the context of biomass
estimation for example, z encodes uncertainty about pertinent variables like
tree height or density, which are only to some degree correlated to satellite
measurements. Marginalization over these factors z results in the model

P (x|l) =
∫

P (x|l, z)dP (z). (1)

Practically, this theoretical model is approximated by a CGAN: On the one
hand, the generator Gγ(l, z), parameterized as a neural network by γ, seeks to
produce sample estimates of the target variable x, which match the data-implied
predictive posterior. On the other hand, a discriminator neural network Dδ(l,x),
parameterized by δ, evaluates the generated samples by comparing them to the
real samples in the training dataset and providing a suitable metric by which
the generator can be optimized.

To find optimal parameter values γ∗ and δ∗ for the generator and the dis-
criminator, respectively, adversarial training is employed. In the most common
variants of adversarial training, the overall objective can be formalized as a mini-
max game, where an objective function L(γ, δ) is maximized by the discriminator
and minimized by the generator [14,34]:

γ∗, δ∗ = argmin
γ

argmax
δ

L(γ, δ). (2)

Due to major practical issues with the original GAN and CGAN implementa-
tions like vanishing gradients and mode collapse [3], recent research has mostly
revolved around improving the stability of adversarial training.

In particular, the Wasserstein variant of CGAN (CWGAN) aims to solve
these issues by using the objective function

LCWGAN(γ, δ) = E(l,x)(Dδ(l,x))− E(l,z)(Dδ(l,Gγ(l, z))) (3)
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with the additional restriction Dδ ∈ L1, where L1 describes the set of Lipschitz-
1 continuous functions. By virtue of the Kantorowich-Rubinstein duality, the
use of this particular objective leads to the minimization of the Wasserstein-1
distance between the data-implied and the generated distribution. The favorable
properties of this metric regarding its gradients with respect to γ and δ have been
demonstrated to mitigate the usual issues of adversarial training when compared
to the Jensen-Shannon divergence used in the original GAN [4].

In implementation, the networks are alternately optimized using stochas-
tic gradient descent and ascent, respectively. For computing the stochastic gra-
dients of the objective with respect to γ and δ, the expectations in equation
(3) are replaced with their empirical approximation over a minibatch. At in-
ference, we may then theoretically generate arbitrarily many sample estimates
x∗ = Gγ∗(l, z) to approximate the predictive posterior distribution by repeatedly
running generator forward passes with different z-inputs, sampled from the la-
tent prior. CGANs therefore allow for the non-parametric and distribution-free
modeling of aleatoric uncertainty, setting them apart from multi-head neural
networks [37], where one is limited to the Gaussian parameterization. At the
same time, they still approximate the full predictive posterior instead of single
output statistics, as is the case for prediction intervals [39]. Instead, the sample
estimates may be used to compute an approximation of a wide range of statis-
tics of the predictive posterior. This also includes correlations in multi-output
setups, which are entirely disregarded by the other methods. The accuracy of
these approximations, however, may be limited by the number of the generated
samples, which is subject to computation time and memory constraints.

Another advantageous aspect about using CGANs for probabilistic regression
is the possibility to use unlabeled data at training time to train the generator
network. This way, the model can be tuned not only with respect to the training
data, but also the testing data without needing access to the corresponding
labels. We expect that a model trained in this manner will be less likely to
overfit, leading to greater generalization capabilities.

The root cause, why this procedure is feasible, lies within the CWGAN op-
timization objective, i.e., the minimization of the Wasserstein-1 distance be-
tween the generated and the real distribution as provided by the discrimina-
tor. We note, that the derivatives of the objective from equation (3) with re-
spect to the generator’s parameters are independent of any reference data x:
∇γLCWGAN = −E(l,z)(∇γDδ(l,Gγ(l, z))) [4, Theorem 3]. This is based on the
fact, that the minimization itself takes place with respect to the joint, rather
than the conditional space of l and x [1]. Practically, we can therefore produce
sample estimates from unlabeled data and still use the discriminator – which
must still be trained on the labeled training dataset – in order to evaluate them
to adjust γ accordingly. We point out that this is, in fact not just a special
property of CWGAN, but is true for most variants of conditional adversarial
training.
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3.2 Generator Ensembles and Epistemic Uncertainty

The above described model accounts for aleatoric uncertainty in regression tasks
by being able to sample from its approximation of the predictive posterior dis-
tribution, but does not model the epistemic uncertainty that arises from mis-
specifications of the network architecture or the optimization strategy. This is
overlooked by previous works who appear to assume that CGANs capture both
components of uncertainty. More specifically, the likely cause of epistemic un-
certainty of our generative model is the generator’s incapacity to replicate the
target distribution or instabilities in the adversarial training procedure, both of
which cause uncertainty in the determination of γ∗. Thus, we must not only
marginalize over z, which is responsible for aleatoric uncertainty, but also over
different hypotheses for γ∗. In this context, the set of optimal parameters is
interpreted as a random variable, as well. For simplicity, we will simply call
its distribution P (γ∗), omitting the fact that this is actually also a conditional
distribution based on the above-described factors. This extends the model in
equation (1) to

P (x|l) =
∫∫

P (x|l, z, γ∗)dP (z)dP (γ∗). (4)

The resulting model effectively averages over possible optimal parameters, which
results in so-called Bayesian Model Averages, of which ensembles represent one
possible implementation [23,46]. In our CWGAN realization of the theoretical
model, each of the generators in the ensemble thus represents one individual
approximation of the predictive posterior distribution. Their combination can
hence be seen as a mixture model with equal weight given to each individual
generator. Statistics of the predictive posterior can be approximated by again
aggregating multiple sample estimates x∗, which in the combined model stem
from multiple generators instead of just one.

For regular neural network ensembles, each network is initialized and trained
independently from scratch. However, the training process of CGANs, and espe-
cially that of CWGANs, is time-expensive, making such a procedure impractical.
We therefore turn to Snapshot Ensembles of generators, which allows for train-
ing an ensemble of networks based on a single initialization [17]. After an initial
phase of T iterations of regular training with a constant learning rate λmax, a
cyclic learning rate schedule, particularly Cosine Annealing with Warm Restarts
[30] is employed. For each cycle of Tcyc training iterations in this schedule, the
learning rate λt at iteration t within the cycle is computed as

λt =
λmax

2

(
1 + cos

(
tπ

Tcyc

))
. (5)

At the end of each cycle, the network is saved as one element of the ensemble
and the learning rate is reset to λmax. We believe that such an approach is
especially suitable for the quantification of epistemic uncertainty of CGANs,
because adversarial training is known to be unstable and oscillate around the
optimum instead of converging to an equilibrium [33,45].
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Fig. 2. Overview of the sites in our dataset and the split between training, validation
and testing. For each of the sites, multispectral and SAR imagery, as well as the refer-
ence biomass map from ALS are given. The image was created using data from Bing
Maps, the US Census Bureau, and the ALS reference dataset [9].

4 Application to Biomass Estimation

The next section presents the application of our methodology to the task of
biomass mapping. First, we present a new dataset for satellite-based AGB es-
timation and afterwards apply a CWGAN implementation of our model and
compare it to deterministic and multi-head neural networks in terms of the
quality of the uncertainties and estimation accuracy. The code for training the
models and a sample of the processed dataset are available at github.com/joh
annes-leonhardt/probabilistic-biomass-estimation-with-cgans-public.

4.1 Dataset

Our dataset is based on biomass maps from the US Carbon Monitoring Sys-
tem, which are based on airborne laserscanning (ALS) campaigns for 176 sites
in Northwestern USA between 2002 and 2016, accessed through ORNL DAAC
[9]. Those records are associated with multispectral imagery from the Landsat-8
satellite with its seven surface reflectance bands on the one hand and L-band

github.com/johannes-leonhardt/probabilistic-biomass-estimation-with-cgans-public
github.com/johannes-leonhardt/probabilistic-biomass-estimation-with-cgans-public
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SAR imagery from ALOS PALSAR-2 with HH- and HV-polarizations and the
incident angle on the other. Both satellite products were subject to several
pre-processing steps like athmospheric and slope corrections and were accessed
through Google Earth Engine. It has been shown, that a combination of these
two sensors leads to improved estimators of vegetation characteristics, because
the optical signal is sensitive towards photosynthetic parts of vegetation, while
SAR backscatter values correlate with physical forest properties like tree stand
height. Regarding the latter, low-frequency radars are preferred, as they are to
penetrate the canopy more deeply [29]. Another advantage of data from SAR and
optical sensors is their global availability over long timespans. ALS records, while
much more laborious to obtain than satellite data, provide far better correlation
with field measurements of AGB and their use as references in this particular
setup is hence justified [48].

To ensure spatial consistency between the three data sources, the multispec-
tral and SAR images are resampled to the grid of the ALS biomass records,
which have a resolution of 30m. For temporal consistency, we choose Landsat-8
and ALOS PALSAR-2 composites for each of the sites for the year the ALS data
was recorded. While there exist ready-to-use composites for ALOS PALSAR-2
[44], Landsat-8 composites were created manually by taking the 25th percentile
of all images from the leaf-on season (March to September) of that respective
year with a cloud cover of less than 5%. For ALS biomass records from 2013
and 2014, we allow association of the SAR composites from 2015, as the com-
posites are only available from that point onward. All records taken before 2013,
however, were discarded from the dataset. The remaining 96 sites are manually
divided into geographically separated training, validation and testing datasets,
as depicted in Figure 2.

4.2 Implementation Details

As the backbone architecture for the CWGAN generator, we use a slightly mod-
ified variant of U-Net [42]. Besides the standard convolutions, we use strided
convolutions in the contracting path and strided transposed convolutions in the
expansive path. All hidden layers are activated with leaky ReLU, while the
final output layer uses ReLU to enforce positive biomass estimates. For the
Wasserstein discriminator, we use a CNN backbone with layers consisting of
convolutions, strided convolutions and leaky ReLU activations. Lastly, a single,
unactivated linear output layer is applied. The inputs for both networks are con-
catenations of the respective input tensors along the channel dimension, i.e. l
and the three-dimensional z-inputs for the generator and l with either x or x∗

for the discriminator.

As is usual for CWGAN training, we perform five discriminator update for
each generator update. For enforcing the Lipschitz-1 constraint in the discrimi-
nator, weight clipping to the range [−0.01; 0.01] is used [4]. We additionally find
that it is useful to pre-train the generator deterministically on MSE to find an
initialization before the subsequent adversarial training. Afterwards, snapshot
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Table 1. List of hyperparameters of the best performing models.

Method Tpt T Tcyc λmax Normalization

Deterministic N/A 2000 N/A 5× 10−5 BN

Multi-Head N/A 5000 1000 5× 10−5 BN

CWGAN 2000 8000 1000 1× 10−5 None

ensembles of 10 networks are then trained according to the above described pro-
cedure. For examining the advantages of using unlabeled data during training, as
described above, we train another CWGAN in the same manner but sample the
generator minibatches from the testing dataset, rather than the training dataset
during the snapshot ensembling phase. We would like to stress again that access
to the labels is not required when training the generator, and this approach is
therefore implementable in practice to specifically fine-tune the generator to the
dataset it shall later be applied to.

For comparison, a snapshot ensemble of multi-head neural networks is trained
on an adapted variant of the MSE loss [20]. We also report results of a network
that has been trained deterministically to minimize MSE as a standard regression
baseline. For both the multi-head and the deterministic baselines, we use the
same backbone U-Net architecture as for the CWGAN generator.

In all cases, training is performed on minibatches of 128 patches of 64 × 64
pixels, which are sampled from random positions in the training maps at each
training iteration. Since U-Net is fully convolutional, however, the network can
be applied to inputs of arbitrary size at inference. The validation dataset is used
to optimize the hyperparameters individually for each method. Particularly, we
conduct a search over the maximum learning rate λmax ∈ [1×10−4, 5×10−5, 1×
10−5], find a suitable number of pre-training (only in the case of CWGAN),
regular training and cycle iterations, Tpt, T and Tcyc, and decide whether to
apply Batch Normalization (BN), Instance Normalization (IN), or neither of
those in the U-Net backbone. The hyperparameters of the best performing model
for each methodology are listed in Table 4.2.

4.3 Experimental Results

We finally evaluate the trained networks on the testing dataset. The input and
reference data, as well as results of the multi-head approach and CWGAN sample
estimates for one particular test site are depicted in Figure 3.

Both methods indicate uncertainties of up to about 100t/ha as measured
by the standard deviations in the high biomass regime of about > 350t/ha. For
larger values, we also observe that the estimation of the predictive posterior does
not significantly change for either model. We interpret this as an indication of
signal saturation as there are no detectable correlations between the satellite
observations and biomass. This threshold is in line with that reported in other
studies on L-band SAR for biomass estimation [19,32,41].
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Fig. 3. Visualization of illustrative results for the test site “Big Sand Creek” in North-
ern Idaho.A: The input data, Landsat-8 in an RGB-Visualization and ALOS PALSAR-
2 HH-backscatter, B: four sample estimates from a CWGAN, C: predicted Gaussian
mean and standard deviation from a multi-head neural network, and D: the corre-
sponding ALS-derived reference biomass map [9].

For quantitative evaluation of the estimated predictive posterior distribu-
tions, we use the Quantile Calibration Error

QCE =
1

M

M∑
m=1

|F (qm)− qm| . (6)

This metric is derived from calibration plots [20], which describe the frequencies
F (q) of reference values lying within quantile q of the predicted distribution.
In this context, M refers to the number of regularly spaced quantile values qm,
for which the frequency is evaluated. To determine the quantiles, the estimated
cumulative distributions are evaluated at the reference values. In the case of a
well-calibrated predictive posterior, the reference value should be equally likely
to fall into each quantile of the predicted distribution, such that the calibration
line is close to the diagonal F (q) = q. Intuitively, QCE describes the approxi-
mate area between this ideal diagonal and the actual calibration line. This way
of quantifying calibration is preferred over other common metrics like the Ex-
pected Calibration Error [15], which only take into account a single uncertainty
statistic. In contrast, QCE allows for evaluating the full approximated predic-
tive distribution including its overall shape, making it sensitive towards possible
misspecifications of the uncertainty’s parametric model.

Additionally, the Root Mean Squared Error

RMSE =

√√√√ 1

N

N∑
n=1

∥xn − x̂n∥2 (7)

measures the accuracy across N point estimates x̂n, as usual in a deterministic
regression task. While the point estimate is directly provided in the multi-head
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Table 2. Quantitative results for QCE and RMSE of the different methods on the
testing dataset. Ensembling (Ens.) refers to the use of Snapshot Ensembles as described
above. Fine-tuning (F.-T.) denotes our method for training time usage of unlabeled
test data data. Exemplary calibration plots used to calculate QCE are shown in the
adjacent figure. For non-ensembles, the given values are averages over the metrics of
the individual networks in the ensemble.

Method QCE [−] RMSE [t/ha]

Deterministic N/A 86.15

Multi-Head 0.0853 85.12

+ Ensembling 0.0779 83.23

CWGAN 0.0851 87.67

+ Ensembling 0.0657 85.38

+ Fine-tuning 0.0889 89.92

+ Ens. + F.-T. 0.0610 86.19

setting as the distribution mean, it is computed as the average over the gener-
ator’s sample estimates x∗ in the case of CWGAN. Note that by using prob-
abilistic methods we do not primarily seek to improve RMSE, but only use it
to verify that the usage of a probabilistic framework does not negatively affect
estimation accuracies.

Results are reported in Table 2. For CWGANs, the values are computed
based on 50 sample estimates x∗ from each generator. We view this number
as sufficient as the metrics differ only insignificantly across multiple evalua-
tion runs. As our main result, we observe that ensembles of CWGANs produce
slightly better calibrated uncertainties than those of multi-head networks. The
Snapshot Ensembling methodology is able to improve the calibration in both
methods. However, while this improvement is marginal in multi-head networks,
it is more significant in CWGANs and individual CWGAN generators do indeed
not provide better estimates of the predictive posterior than individual multi-
head networks. This insight is consistent with our expectation that Snapshot
Ensembles are especially helpful in the context of CGAN-based methodologies,
because fluctuations within the adversarial training process are successfully av-
eraged out. For the multi-head approach on the other hand, snapshot ensembling
cannot overcome the misspecification of the predictive posterior’s parameteriza-
tion.

For CWGANs, calibration is slightly improved when using our fine-tuning
methodology, supporting our claim that such procedures may be helpful for
training models which are tailored for application to specific data, e.g., from
a particular geographical region. This approach does, however, come with the
additional computational cost of retraining the network every time it is applied
to a new dataset and more research may be needed to determine if the method
is able to consistently improve CWGAN-based estimation.
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Furthermore, it was demonstrated that both probabilistic approaches do not
suffer from a significant loss in accuracy when compared to deterministic meth-
ods. In fact, our results show that snapshot ensembling consistently reduces
RMSE by averaging over individual networks’ epistemic uncertainties. On a fi-
nal note, we observe that CWGANs deliver more consistent biomass maps than
point estimators by being sensitive towards correlations in the output. This can
be observed from the small scale details of the maps in Figure 3: Whereas the
point estimates of multi-head networks are rather smooth, the texture of the
reference maps is at least partly replicated in the CWGAN sample estimates.

5 Conclusion and Outlook

This paper presented a new approach to uncertainty quantification in satellite-
based biomass estimation. In particular, we used CGANs for non-parametric
approximation of aleatoric uncertainty and Snapshot Ensembles for quantifying
epistemic uncertainty. The methods were discussed theoretically, implemented
and evaluated on a novel dataset consisting of optical and SAR imagery and
ALS-derived references. The experiments demonstrated that our method is com-
petitive with the commonly used parametric multi-head approach without loss
in accuracy.

In light of these promising results, we envision several future research direc-
tions. From a methodological standpoint, we hope to encourage future works
at the intersection of deep generative models and uncertainty quantification.
Beyond biomass estimation, we consider investigations of CGANs’ capabilities
for uncertainty quantification in other remote sensing regression problems with
similar restrictions, or even tasks from different domains like classification and
segmentation to be interesting topics of future studies. Moreover, we believe that
our approach to training time usage of unlabeled data is worthy of more detailed
and fundamental investigation as further analyses may pave the way for general
applications in the context of semi-supervised learning or domain adaptation.

Our dataset offers a starting point for the inclusion of data from more satellite
missions and globally distributed biomass reference records. Such a dataset in
combination with multi-sensor, probabilistic estimation methods like ours would
enable the creation of reliable global and multitemporal biomass monitoring
products. To improve the overall accuracy of such products, we also look forward
to new spaceborne sensor technologies, such as the P-band SAR onboard the
BIOMASS mission [26], which is set to launch in 2023.
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