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Abstract

Yield estimation is of great interest in viticulture, since an early estimation

could influence management decisions of winegrowers. The current practice

involves destructive sampling of small sets in the field and a subsequent

detailed analysis in the laboratory. The results are extrapolated to the field

and only approximate the actual conditions. Therefore, research in recent

years focused on sensor-based systems mounted on field vehicles since they

offer a fast, accurate and robust data acquisition. However many works

stop after detecting fruits, rarely the actual yield estimation is tackled. We

present a novel yield estimation pipeline that uses images captured by a

multi-camera system. The system is mounted on a field phenotyping platform

called Phenoliner, which has been built from a modified grapevine harvester.

We use a neural network whose output is used to count berries in single

images. In contrast to other existing methods we take the step from the

single vine image processing to the plant level. The information of multiple

images is used to acquire a count on plant level and the approach is extended

to the processing based on the whole row. The acquired berry counts are
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used as input for the yield estimation, and we explore the limitations and

potentials of our pipeline. We identify the variability of the leaf occlusion as

the main limiting factor, but nonetheless we achieve a mean absolute yield

prediction error of 26% for plants in the vertical shoot positioned system.

We evaluate each described stage comprehensively in this study.

Keywords: Deep Learning, Semantic Segmentation, Geoinformation,

Viticulture, Yield Estimation

1. Introduction

Grapevine is one of the ecologically most valuable crops. But in contrast

to many other agricultural crops, like wheat (Ray, Mueller, West and Foley,

2013) or maize, the goal is not yield enhancement. The focus in viticulture is

on quality aspects and the optimization of resources, since a larger amount of

grape bunches and berries leads to a decrease in wine quality (Howell, 2001).

In general, guided management and breeding decisions in agriculture re-

quire reliable, objective and exhaustive information about phenotypic traits

of the relevant crop. Especially yield estimations depend on information

like the number, size and weight of crops. The large scale acquisition of

these phenotypic data and their respective automatic analysis is called high-

throughput phenotyping (Araus and Cairns, 2014) and the recent develop-

ments in this research field are mainly driven by the development of sensors,

like thermal-, RGB (red/green/blue)-, RGBD (r/g/b/depth)- and multi-

spectral cameras, as well as laser scanners. The main advantages of these

automatic procedures are the coverage of large field portions, as well as ob-

jectivity, repeatability, and high quality results.
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Challenges arise especially for perennial crops like apples or grapevine,

where phenotyping has to be performed in the field under sometimes dif-

ficult terrain situations. Traditionally these procedures include simple vi-

sual screening, counting of yield components in the field or even harvesting

samples and weighing them in the lab (Alercia et al. (2009), Lorenz et al.

(1995), Bloesch and Viret (2008)). The collected samples or information

need to be investigated by skilled experts (Nuske et al., 2014) but these pro-

cedures are nonetheless time consuming, error prone and highly subjective.

Another drawback is that information are extrapolated from small samples

to large fields. Therefore recent research focuses on objective, sensor-based

approaches to enable a fast and reliable high throughput phenotyping for

perennial crops, including viticulture (Matese and Gennaro, 2015).

For this purpose, different sensors, data acquisition strategies and even

platforms were developed in several studies. From handheld sensors (Kur-

tulmus, Lee and Vardar, 2011, Linker, Cohen and Naor, 2012, Dorj, Lee

and Yun, 2017), over small (Gao et al., 2020, Hemming et al., 2014) to

big phenotyping vehicles (Kicherer et al., 2017, Gan et al., 2020), up to

drones (Kalantar, Edan, Gur and Klapp, 2020, Gennaro, Toscano, Cinat,

Berton and Matese, 2019). The used sensors include RGB (Nuske et al.,

2014, Zabawa et al., 2020), (Aquino, Millan, Diago and Tardaguila, 2018),

multi- or hyperspectral cameras (Bendel et al., 2020), over RGBD-sensors

(Kurtser, Ringdahl, Rotstein, Berenstein and Edan, 2020) to laser scanners

(Tagarakis, Koundouras, Fountas and Gemtos, 2018).

Many works, not only in viticulture, tackle the problem of detecting and

localizing fruit as a first step for yield estimation. In some cases the detection
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is straightforward if the fruit has a very distinct color, for example orange

citrus fruit (Dorj, Lee and Yun, 2017) or red grapes (Diago et al., 2012, Silver

and Monga, 2019) in front of green canopy. In other cases the detection is

more challenging, especially for green fruits in front of green canopy (Kurtser,

Ringdahl, Rotstein, Berenstein and Edan, 2020, Kurtulmus, Lee and Vardar,

2011, Linker, Cohen and Naor, 2012, Stein, Bargoti and Underwood, 2016).

For the latter case, many different strategies were developed, either by us-

ing only RGB images or with the help of additional sensors. For example

Wachs, Stern, Burks and Alchanatis (2010) detect green apples using multi-

modal data consisting of RGB and thermal images while Linker, Cohen and

Naor (2012) use only RGB images. Gené-Mola et al. (2020) on the other

hand detect apples with a LIDAR mounted on mobile platform. Gan, Lee,

Alchanatis and Abd-Elrahman (2020) use only thermal images in combina-

tion with a water spraying system to detect green citrus fruit. Nuske, Achar,

Bates, Narasimhan and Singh (2011) and Roscher et al. (2014) detect single

green grapevine berries as circular objects in images by using a Hough- or

radial-symmetry-transform respectively. Diago et al. (2012) use the Maha-

lanobis distance for the detection of berry and leaf pixels. Kicherer et al.

(2015) developed a field phenotyping platform which was later used by Rose

et al. (2016) to reconstruct 3D point-clouds from image sequences for the

detection of single grapevine berries. Nyarko et al. (2018) identify fruits as

convex surfaces.

With the rise of deep learning methods new approaches based only on

RGB images emerged. The applications for images include the detection

of grapevine influorescenses (Rudolph, Herzog, Töpfer and Steinhage, 2018)
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or berries (Aquino et al., 2016, 2018, Zabawa et al., 2020, Cecotti et al.,

2020) with convolutional neural networks (CNNs) or the adaptation of a

crowd-counting algorithm (Coviello, Cristoforetti, Jurman and Furlanello,

2020). Others use a state-of-the-art instance segmentation network, the

Mask-RCNN, for the detection and tracking of grapevine berries (Nellithi-

maru and Kantor, 2019, Santos, de Souza, dos Santos and Avila, 2020). For

a further review about different sensors and algorithms, which were used for

fruit detection and localization we refer the reader to Gongal, Amatya, Kar-

kee, Zhang and Lewis (2015). For deeper insights in the usage of computer

vision, especially stereo methods in fruit picking systems, we refer the reader

to Tang et al. (2020).

Many of these works stop after detecting the fruits, only rarely the subse-

quent problem of yield estimation is actually addressed. Even the definition

of yield ranges from a comparison of predicted and actual fruit count (Bar-

goti and Underwood, 2017, Dorj, Lee and Yun, 2017) to the investigation of

the harvest weight with respect to estimated weight (Kalantar, Edan, Gur

and Klapp, 2020). Anderson, Walsh and Wulfsohn (2021) give a systematic

overview of recent advances on the forecasting of yields for tree fruits.

In viticulture, different parameters can be used at different points in time

to forecast yield with a yield function (de la Fuente, Linares, Baeza, Mi-

randa and Lissarrague, 2015, Clingeleffer, Dunn, Krstic and Martin, 2001,

Coviello, Cristoforetti, Jurman and Furlanello, 2020). These parameters in-

clude cluster number, size, volume, length and width (Kicherer, Roscher,

Herzog, Förstner and Töpfer, 2014, Ivorra, Sánchez, Camarasa, Diago and

Tardáguila, 2015, Hacking, Poona, Manzan and Poblete-Echeverŕıa, 2020,
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Gennaro, Toscano, Cinat, Berton and Matese, 2019), (Kurtser, Ringdahl,

Rotstein, Berenstein and Edan, 2020, Santos, de Souza, dos Santos and Avila,

2020). Usually a weight factor needs to be taken into account, respectively

an average bunch weight or the weight of single berries, which are collected

manually and averaged over many years. Other works estimate the fruit

weight directly from the image (Kalantar, Edan, Gur and Klapp, 2020, Sil-

ver and Monga, 2019) or correlate the number of detected objects with the

harvested yield at the end of the season (Nuske, Achar, Bates, Narasimhan

and Singh, 2011). One example for a complex approach which is based on

a combination of counting and manual sampling is presented by (Coviello,

Cristoforetti, Jurman and Furlanello, 2020). They describe the yield initially

as a function of the number of vines per surface unit, the number of grape

bunches per vine and the average grape bunch weight. Due to practical lim-

itations, they substitute the average grape bunch weight with the number of

berries per bunch and the average berry weight. Others on the other hand

propose a minimalistic approach inspired by Clingeleffer, Dunn, Krstic and

Martin (2001). They estimate the yield at harvest as a function of the berry

number and the average berry weight (Nuske et al., 2014, Aquino et al.,

2018), since 90% of the yield variation are caused by the berry number per

vine, while the remaining 10% are caused by the average berry weight (Clin-

geleffer, Dunn, Krstic and Martin, 2001). For a detailed review regarding

yield estimation we refer the reader to Darwin, Dharmaraj, Prince, Popescu

and Hemanth (2021) and Koirala, Walsh, Wang and McCarthy (2019).

One of the limiting factor for all automatic yield estimation approaches

is the visibility of the investigated yield components. This could mean for
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example, that grapes or berries are occluded in the images due to leaves.

One idea to minimise the occlusion is the usage of active airflow to move

canopy out of the way (Gené-Mola et al., 2020). (Koirala, Walsh, Wang and

McCarthy) used a dual viewpoint approach for mango fruit load estimation

and estimated occlusion correction factors based on manual counts. Other

approaches, especially for sweet pepper harvesting in horticulture, try to de-

crease the effect of occlusions by investigating the benefits of multiple but

static viewpoints (Hemming, Ruizendaal, Hofstee and Henten, 2014, Harel,

van Essen, Parmet and Edan, 2020). Wang, Walsh and Koirala (2019) de-

veloped a multi-viewpoint approach based on 10 fps video sequences for the

counting of mango. They tracked detected fruits in neighbouring frames with

the Hungarian Algorithm and predicted their positions in following frames

using a Kalman-Filter. Kurtser and Edan (2018a,b) focused on a dynamic

planning of viewpoints for a robotic arm, which can guide harvesting deci-

sions. Gao et al. (2020) on the other hand classified the detected apples into

different occlusion classes to decide on different picking strategies.

In this paper, we present and evaluate novel data analysis pipeline for

automated grapevine yield estimation. This pipeline is based on a method

for counting of berries in single images, which has been presented by the

authors in an earlier publication (Zabawa et al., 2020). This method has

been extended to be used on multiple overlapping images, which are taken

from a mobile multi-camera system. The pipeline considers vertical and

horizontal overlap between the images and predicts the yield of full plants

or even rows. With the collected image data in combination with reference

yield data, acquired over several years, we focused on the estimation of yield
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and the main challenges in this process. We identified the visibility of the

used yield components, the berry number, as the key factor influencing the

yield estimation and performed leaf occlusion experiments with the goal of

improving the yield estimate. Lastly, we perform a yield estimation for the

vertical shoot positioned (VSP) system based on the number of detected

berries and an average berry weight which we collected manually over three

years. In addition, we put the results into perspective with regards to other

image-based and classical approaches.

2. Materials and Methods

Our pipeline covers various steps from image acquisition to the estimation

of yield in kg. In the following, we will first present the field phenotyping plat-

form and the sensors which were used for the data acquisition. Furthermore,

we will give detailed information regarding collected data and algorithms for

the evaluation. We start with a brief introduction regarding single image

data, explain the approach for handling the vertical overlap on the plant

level and the way we handle the horizontal overlap, and end with the yield

estimation procedure.

2.1. Sensor System

The data acquisition process was performed with the Phenoliner (Kicherer

et al., 2017), a field phenotyping platform. The platform itself is a modi-

fied grapevine harvester from ERO Gerätebau (Niderkumbd, Germany), the

ERO-Grapeliner SF200. The harvesting equipment, including the shaking

unit, destemmer and grape tank were removed and a multi-camera system

was installed in the so called ’tunnel’. The platform was further equipped
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with an artificial lighting system as well as a diffuse back wall. To ensure

a precise positioning, a real time kinematic (RTK)-GNSS System (SPS852,

Trimble ®, Sunnyvale, CA USA) was put on top of the Phenoliner. It is able

to achieve an accuracy of 2 cm.

(a) Phenoliner (b) Camera System

Figure 1: 1a shows the phenotyping platform Phenoliner (Kicherer et al., 2017).

It is based on a grapevine harvester from ERO Gerätebau, where the harvesting

equipment was removed and camera systems, lighting units and diffusing back-

ground were installed. The camera system used can be seen in 1b and consist of

five cameras which deliver overlapping images of the canopy. The vertical cameras

are positioned with 35 cm between each camera resulting in a maximum distance

between the outer two cameras of approximately 70 cm. This leads to a vertical

canopy coverage of 1.2 m.

The camera system consists of five cameras, four RGB (DALSA Ge-

nie NanoC2590, Teledyne DALSA Inc., Waterloo, ON, Canada) and one

NIR (DALSA Genie NanoM2590-NIR, Teledyne DALSA Inc., Waterloo, ON,

Canada) camera. Three of the RGB cameras are positioned on top of each
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other, each with a distance of 35 cm between each. The lowest camera is part

of the lower camera system as well, together with the forth RGB camera it

encloses the NIR camera. These cameras are positioned directly beside each

other, leading to a baseline of 7 cm each. The cameras have a 5.1 Megapixel

sensor and 12 mm lenses, each image has dimensions of 2592 × 2048 pix-

els, leading to a real world resolution of 0.3 mm. In our experiments we

used the images captured with the three vertical cameras. We didn’t use the

two remaining cameras (RGB and NIR), but included them in the above-

description for the sake of completeness. The combination of the GNSS

receiver on top of the Phenoliner, the data from a dual axis inclinometer and

a previously performed system calibration, we were able to determine the

absolute position of each camera with an accuracy of about 3cm.

2.2. Data

We collected several datasets in three consecutive years, 2018 - 2020. The

data collection was performed in experimental vineyard plots at the JKI Geil-

weilerhof located in Siebeldingen, Germany (49°21.747’N, 8°04.678’E). The

datasets include image sequences covering whole rows of vines and reference

data corresponding to selected plants in each row. Tab. 1 summarises the

collected data regarding the different varieties and training systems. For each

variety we give the number of observed plants and the number of reference

plants. The reference plants remained the same over the three years.

2.2.1. Image data

Three different grapevine (vitis vinifera) varieties were observed with the

Phenoliner over these three years: Riesling, Felicia and Regent (see Fig.
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Table 1: Overview of the collected data over the years 2018 to 2020. We observed three

different varieties and two training systems. In each row 10 plants (one meter of canopy)

were harvested manually at the end of the season as a yield reference. The observed

reference plants were the same each year.

Years Variety # Rows # Plants # Reference plants

SMPH VSP (10 each row)

2018 - 2020 Riesling 4 3 175 70

2018 - 2020 Felicia 2 2 387 40

2018 - 2020 Regent 2 2 205 40

2). The image acquisition process involved driving through each row and

collecting images approximately every 4 cm. Each variety was grown in two

different training systems, the vertical shoot positioned system (VSP) and

the semi minimal pruned hedge (SMPH). Each training system poses different

challenges which have to be acknowledged. The VSP is a traditional system,

with only one main branch. In one side of the canopy defoliation is performed

in the fruit-zone after flowering. The grape bunches are compact, with a

homogeneous berry size, and occur mainly in the lower part of the canopy in

the fruit zone. The SMPH on the other hand features many branches and a

large amount of leaves, since the canopy is not reduced. The grape bunches

are scattered across the whole canopy but appear mainly in the upper part

of the canopy. The bunches itself are loose and have inhomogeneously sized

berries.

From this extensive image database 59 images were labelled manually on

berry instance level using a image editing software. For more details we refer
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(a) Riesling (b) Felicia (c) Regent

Figure 2: Images showing the three different varieties observed in the experiments.

Riesling and Felicia are green varieties, while Regent is a red one. All images were

recorded with the Phenoliner at the beginning of June, shortly after thinning.

the reader to Zabawa et al. (2020). These images in combination with the

annotations were used as training data for our berry detection pipeline.

2.2.2. Reference data yield

The reference data for the yield estimation experiment were collected

from the reference plants (see last column of Table 1). Corresponding to each

reference plant one meter of canopy was harvested and weighed manually at

the end of the season from 2018 - 2020. Yield estimation was restricted to

Riesling.

2.2.3. Reference data berry weight

Destructive samples were collected from the remaining vines, which did

not overlap with the reference vines. These exemplary grape bunches were

collected at three points in time, or precisely at three different BBCH stages

(Alercia et al., 2009) (see Fig. 3), to monitor the plant performance over the

season. The first observed stage was BBCH 75, with pea sized berries. At

BBCH 79 the majority of berries are touching each other. The last stage was
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(a) BBCH75 (b) BBCH79 (c) BBCH89

Figure 3: The images show the same Riesling plant observed in the different BBCH

stages. From left to right the berry size increased and the color changed.

BBCH 89, where the grapes are ready for harvest.

At each of these points in time ten grape bunches were collected per row

and investigated in detail in the laboratory. Each bunch was weighed, mea-

sured manually and observed with a handheld scanner (Rist et al., 2018),

delivering grape bunch characteristics like bunch length and width, berry

number and weight, average berry size per bunch, as well as the bunch vol-

ume. To use an representative measure, the berry weight measures at the end

of the season were averaged over the three years, for each variety and training

system. This value was used as the weight factor in the yield estimation.

2.2.4. Leaf occlusion

To account for the percentage of occluded berries, we conducted two leaf

occlusion experiments in 2019 and 2020. In both years, Riesling plants were

observed in both training systems, VSP and SMPH. We collected data with

the Phenoliner twice, first with full leaf occlusion and at the second time

with removed leaves. We observed 35 plants in the VSP (5 in 2019 and 30

in SMPH) and 28 in the SMPH (10 in 2019 and 18 in 2020).
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Figure 4: Pipeline illustrating the steps from image acquisition to the count on plant level.

2.3. Yield estimation pipeline

We propose an image-based approach for the detection, counting, and

yield estimation of grapevine berries in overlapping image sequences (see

Fig. 4). In the following, we will explain the single steps of the pipeline. We

briefly explain the handling of single images which was already discussed in

detail in Zabawa et al. (2020). This approach was extended to include the

handling of vertically overlapping images and taking the information from

single images to the plant level. Moreover, we will discuss the image selection

process from the horizontal image sequence and explain our approach for yield

estimation.

2.3.1. Detection of grapevine berries in single images

The detection of single berries was realised with a convolutional neu-

ral network (CNN) (Long, Shelhamer and T.Darell, 2015) which performs a
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semantic segmentation following the approaches presented in Zabawa et al.

(2020). The network has an encoder-decoder structure, the encoder backbone

consists of an MobilenetV2 (Sandler, Howard, Zhu, Zhmoginov and Chen,

2018) and the decoder head of a DeepLabV3+ (Chen, Zhu, Papandreou,

Schroff and Adam, 2018). The network performs a semantic segmentation

with the classes ’berry’, ’edge’ and ’background’ (see Fig. 6a). Each single

berry is surrounded by an edge, enabling the identification of single object

instances, which is usually realised with computation-intensive instance seg-

mentation approaches. On top of the CNN, we apply a post-processing step

to reduce the amount of misclassifications by using knowledge of the berry

geometry and quality aspects of our predictions. To count the number of

berries per image, we discard the class ’edge’ and count the remaining ob-

jects of the class ’berry’ with a connected component algorithm. For more

details we refer the reader to Zabawa et al. (2020).

For this work, the hyper-parameters were not changed, but we added

additional images to the training dataset, increasing the amount of train-

ing data to 59 images from the data described in Sec. 2.2.1, covering more

variations over the years 2018 to 2020. The 59 images with pixel-wise anno-

tations contain 38 images of plants trained in the SMPH, and 21 in the VSP.

We annotated more images showing SMPH plants, since the conditions are

more challenging. 30 images show Riesling, 18 Felicia and 11 Regent. The

annotated images did not show the mentioned reference plants which were

observed for yield estimation purposes. For detailed information regarding

the data split for the training process we refer the reader to Zabawa et al.

(2020).
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Table 2: Overview of the annotated images which were used to train the CNN for the

berry detection, with respect to training system and variety.

Riesling Felicia Regent

VSP 15 4 2

SMPH 15 14 9

2.3.2. Counting of berries in vertically overlapping images

Our camera system covers 1.5 m height of canopy by providing three

vertically overlapping images. In order to prevent a distorted count, objects

which are present more than once were identified in overlapping regions.

realise this by matching grape bunches from one image to the other one

using the normalised correlation coefficient. To ensure a sufficient similarity

between the found patches, we set a threshold of 0.3 for the matched patches

and only allow the best result, if the matching value is higher than the

threshold. The single steps of the full pipeline are illustrated in Fig. 5.

In detail, we extract image patches around objects of interest based on

the CNN predictions and match them to another, overlapping image. In con-

trast to the counting process, where the object level is of interest, i.e. single

berries, the object level is insufficient for the matching of image patches be-

cause individual berries are too small and look very similar to each other.

Therefore, we join the classes ’edge’ and ’berry’ to a new mask, which rep-

resents information corresponding to the bunch level (see Fig. 6b). In the

following, we denote this as ’bunch mask’. To simplify the matching problem,

we mask the original image with the bunch mask (example can be seen in
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Figure 5: Pipeline for the patch matching process. The input are two images, which are

masked with the bunch mask. A patch is extracted in the upper image and the search

space in the lower image is reduced due to an approximately known image orientation.

The corresponding bunches are identified after correlating the patch with the image.

Fig. 6b), to identify regions which contain berries. These masks are used to

remove the unnecessary canopy information. The result is an image, where

every pixel is black except the berry regions (see Fig. 6c). In the following,

we denote this masked image as the ’berry region image’.

For the VSP the grape bunches are compact and single berries are mostly

joined in grape clusters. In contrast to this, images showing the SMPH

training system contain many single berries since the grape bunch structure

is very loose. Therefore, we dilate the boundaries of each object three times

to join single berries with neighboring ones. For the VSP, we perform the

dilation operation only once.

However, since this can lead to joint objects which can cover up to half of
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(a) Berry-edge mask (b) Bunch mask (c) Masked image patch

Figure 6: Fig. 6a shows an extract from the berry-edge mask which is the output

of the neural network (Zabawa et al., 2020). White shows pixels corresponding to

the class ’berry’ while grey pixels are the class ’edge’. For the matching of image

patches into another image we join both classes (see Fig. 6b) and use these to

mask the original images (see Fig. 6c). This reduces the patch matching problem

to regions containing berries.

the image, we divide large bounding boxes into smaller ones. The threshold

to divide bounding boxes is chosen manually and corresponds to an average

grape bunch size, in our case 400 pixels in vertical and horizontal direction.

For the matching process, we divide the three vertically overlapping re-

gions into two parts each. The three overlapping images are denoted as top,

middle and bottom image. The lower half of the top image is matched to

the upper half of the middle image. The lower half of the middle image is

matched to the upper part of the bottom image. There is no image region

where all three images overlap.

Since the cameras are mounted on top of each other and the intrinsic and

extrinsic camera calibration parameters are known, we can reduce the search

space in vertical and horizontal direction. Since the cameras are vertically

aligned, we only accept matches approximately in the same columns of the
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image with a small offset of 20 pixels to the left and the right. Furthermore

we set a depth threshold for valid matches. The depth or more precisely the

distance between camera and detected object is computed using the known

calibration and the disparity from the matched patch pairs. The minimal

allowed depth is set to 0.3 m, while the maximal allowed depth is 1.3 m.

The maximum value is chosen based on the maximum available space in the

measurement chamber.

2.3.3. Processing of a whole row

Due to the movement of the sensor platform, we are also able to cover

the whole row vertically. In the described experiments we set the system

to capture as many images as possible, which was about one set of images

every 4cm. This large amount of images allows various different evaluation

and interpretation strategies and also enables the 3D reconstruction of the

canopy using structure from motion methods (Rose et al., 2016). The latter,

however, is beyond the scope of this paper.

To deal with the horizontal overlap of the images, it would be possible to

use the same approach as described in Sec. 2.3.2, including the processing of

all images taken in a row and the identification of recurring matches in sub-

sequent images. Due to the high overlap between the images, this approach

would be very time consuming. Instead, we decided to perform an image

selection based on the GNSS coordinates, optimizing for maximal coverage

and minimal overlap.

For this, we utilise the camera calibration and the approximate distance

between the camera and the canopy. Using this knowledge, we are able to

calculate the distance between camera positions which is needed to acquire
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Figure 7: Image selection based on the geo-referenced image coordinates with the goal of

minimal overlap between selected images.

non-overlapping images as can be seen in Fig. 7. For our sensor system

a distance of 0.8 m between camera positions ensures a complete coverage

of the row while using the minimal amount of necessary images. Since the

image acquisition is approximately every 4 cm, in some cases grape bunches

are visible in the edges of two consecutive images. These overlapping regions

are not critical, since the bunch is visible from two different sides and the

observed information is therefore independent.

2.4. Yield estimation

As mentioned in Sec. 1, various approaches exist for the estimation of

yield ranging from destructive methods, which require the removal and inves-

tigation of samples, to counting of certain yield components in combination

with reference values collected over several seasons (Clingeleffer, Dunn, Krstic

and Martin, 2001, Coviello, Cristoforetti, Jurman and Furlanello, 2020).

These approaches can be used at different points in time to forecast yield

with a yield function (de la Fuente, Linares, Baeza, Miranda and Lissarrague,
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2015). Usually, weight factors like an average bunch or berry weight were col-

lected over several years and taken into account. A prominent approach was

presented by Coviello, Cristoforetti, Jurman and Furlanello (2020) which,

however, relied on manual sampling. They described the yield initially as a

function of the number of vines per surface unit N v, the number of grape

bunches per vine N gb and the average grape bunch weight W gb:

Y = N v ·N gb ·W gb (1)

The average grape bunch weight can be replaced by the number of berries

per bunch N bb and the average berry weight W b:

Y = N v ·N gb ·N bb ·W b (2)

We follow Nuske et al. (2014) who proposed a minimalistic approach

inspired by Clingeleffer, Dunn, Krstic and Martin (2001). They expressed

the yield at harvest as a function of the berry number N b and an average

berry weight W b.

Y = N b ·W b (3)

In our case, the total number of berries N b cannot be measured directly.

Since only a portion of the berries N vis is visible in images, we have to take

the following aspects into account: berries which are occluded since they are

on the other side of the grape bunch; whole bunches which are on the other

side of the canopy; and bunches which are covered by leaves. We take theses
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invisible berries into account with a visibility factor P vis:

Y = (N vis + P vis ∗N vis) ·W b (4)

2.5. Evaluation measures

We applied various measures for the evaluation of our methods. We inves-

tigated the counting of berries in overlapping images and the yield estimate

by computing the coefficient of determination (R2), which describes the cor-

relation between the reference count and the output of our pipeline.

Furthermore we compute the mean absolute error (MAE), defined as

MAE =
1

N
·

N∑
n=1

∣∣Cn − Cref
n

∣∣ , (5)

as well as the mean squared error (MSE ), defined as

MSE =

√√√√ 1

N
·

N∑
n=1

(Cn − Cref
n )2 . (6)

The variable Cn denotes the estimated berry count while Cref
i represents

the manually acquired reference for image n. The MAE represents a measure

of accuracy while the MSE gives information about the robustness. Besides

the absolute value we also add the measures in percent with respect to the

mean reference to provide a better interpretability.

3. Results

The counting of grapevine berries in single images was evaluated exten-

sively in Zabawa et al. (2020). Therefore we performed the following ex-
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periments to evaluate our pipeline with respect to the performance on plant

level:

1. evaluation of vertically overlapping images,

2. empirical investigation of repeatability,

3. investigation of leaf occlusion with respect to different training systems,

and

4. yield estimation.

3.1. Vertical overlap

We verified our matching algorithm to the manual selection done by a

human for 10 plants in the VSP and 10 trained in the SMPH system. Each

plant was covered by three vertically overlapping images. Our pipeline ex-

tracts the number of berries per image by counting the connected components

in the berry masks predicted by our neural network. The overlap is taken

into account by matching image patches containing grape bunches from the

overlapping regions (see Fig. 8a), leading to a count per image set. The

reference data consisted of a manual berry count for each image and a man-

ual identification of areas which were observed in two images (see Fig. 8b).

Therefore, we jointly investigated the berry count and the vertical matching

process.

For the VSP we achieved a correlation between manually and automat-

ically counted berries per plant of 91.6%. The minimum number of berries

per plant was 493 berries and the plant with the most berries showed 911

berries, the mean was 649. The MAE was 45 (6.9%) berries and the MSE

56 (8.6%).
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(a) Automatic vertical matching (b) Manual vertical matching

Figure 8: Comparison of the matching for vertically overlapping images. The left

image shows the manual reference matching while the right side shows the match-

ing performed with our method.

For the SMPH the correlation was slightly worse with 89.0%. This is in

line with the results for counting in single images in Zabawa et al. (2020). In

general the counting of berries in the SMPH system is more difficult due to

the inhomogeneous berry sizes. The number of berries per plant was between

1027 and 2066 berries with an average number of 1359 berries. The MAE

was slightly lower compared to the VSP, with 86 (6.3%) berries while the

MSE was 114 (8.1%) berries.
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3.2. Repeatability and horizontal overlap

We conducted a further experiment to provide information, how repeat-

able the counting pipeline of our method is. Therefore we observed two rows,

one of each training system, three times each. We evaluated the collected

data from all six drives with our image selection process based on the camera

positions, and the following counting on vertically overlapping image sets.

Table 3: Counted berries per row VSP

Drive # Selected images # Berries Mean Standard deviation

1 32 14399.0

2 32 14322.0 14685.7 564.5

3 32 15336.0

Table 4: Counted berries per row SMPH

Drive # Selected images # Berries Mean Standard deviation

1 32 19950.0

2 34 21923.0 20530.0 1017.6

3 33 19935.0

In both cases we achieved similar results for each of the three drives. For

the VSP row we detected in average 14686 berries with a standard deviation

of 564 berries (3.8%). The number of selected images was the same for each

of the three drives.
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(a) plant before leaf removal (b) plant after leaf removal

Figure 9: Both images show the same plant in the vertical shoot positioned system.

Fig. 9a shows the plant before the leaf removal while Fig. 9b shows the plant

without leaves. Only a small portion of the berries where covered by leaves.

For the second row, which was trained in the SMPH, we have different

numbers of images which are selected per drive. During the second drive,

problem with the GPS positioning occurred which influenced the image se-

lection process. This led to a mean berry number of 20530 berries with a

standard deviation of 1017 berries (5.0%).

3.3. Leaf occlusion

The estimation of yield is highly dependent on the number of visible yield

components. In the VSP system, the influence of leaf occlusion is relatively

small since most of the grape bunches are positioned at the lower part or even

beneath the canopy in the so called fruiting zone (see Fig. 9). SMPH, on

the other hand, has a high proportion of occluded berries with its bush-like

canopy structure (see Fig. 10).

Between the two different training systems and both years, the percentage
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(a) plant before leaf removal (b) plant after leaf removal

Figure 10: Both images show the same plant in the semi minimal pruned hedge

system. Fig. 10a shows the plant before the leaf removal while Fig. 10b shows the

plant without leaves. Most of the berries which can be seen on the right side are

not visible on the left due to the leaf occlusion.

of covered berries was highly variable. The VSP featured less but larger

berries in general. Since most of the grape bunches grew in the lower part of

the canopy, the occlusion was low as well (see Fig. 11). In 2019, in average

49% ±33% more berries were visible after leaf removal. For the single plant,

the occlusions ranged between 8% up to 97%. In 2020, the average occlusion

was higher with 112% ±62%. But here, similar to 2019, the numbers between

single plants varied between 11% to 250%. Details for the single plants can

be found in Fig. 11. We use the mean occlusion rate over both years for the

VSP (70% ±60%) as the visibility factor P vis = 0.7 in the following yield

estimation experiment.

On the contrary, the amount of invisible berries was large for plants in

the SMPH system. Since the grape bunches were present all over the canopy,
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(a) Berry number (b) Percentage of occluded berries

Figure 11: Details of the leaf occlusion experiment for the VSP in 2019 and 2020.

The left side shows the number of berries before leaf removal (yellow) and after

the leaf removal (violet). The right side shows gain of visible berries in percent in

violet respectively.

the occlusion level was high. In 2019 in average 223% ±108% more berries

were visible after leaf removal. The spread ranges from 86% to up to 466%

of covered berries. In 2020, in average even 446% ±440% more berries were

visible. Here, the range was from 298% up to 1857% (see Fig. 12).

The presented results indicate that it is difficult to determine a single

factor which accounts for the number of berries which are covered by leaves.

The covered berry number deviates highly within the plants of the same

training systems and the two years. We underline our findings with Fig. 13

showing histograms of the percentage gain in berry visibility. For none of the

training systems we can identify a single maximum or a specific distribution.

For the VSP we can see that the distribution is wide spread between 0 to

175%. The SMPH shows an especially large variation in the factor for the

leaf coverage up to 400% and many outliers in the direction of large values.
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(a) Berry number (b) Percentage of occluded berries

Figure 12: Details of the leaf occlusion experiment for the SMPH in 2019 and 2020.

The left side shows the number of berries before leaf removal (yellow) and after

the leaf removal (violet). The right side shows gain of visible berries in percent in

violet respectively.

3.4. Yield estimation

In the following, we correlated the number of visible berries with the yield

at harvest and analysed the relationship between both. Fig. 14 and Fig. 15a

show the number of visible berries in context with the yield per plant. We

used data from three consecutive years to estimate a yield function. In each

year we observed the same 20 plants in the VSP and the SMPH. As can

be seen in Fig. 14, clusters representing the three years can be identified.

Furthermore we can see that the relation between the number of visible

berries and the yield seems to be nearly linear, with a slight plateau in the

middle. For the SMPH no apparent relationship is observable, especially for

the year 2019. This is also supported by the results of our leaf occlusion

experiment, which shows a high variation of the leaf occlusion. Therefore we

focus on the VSP in the following.

Beside the number of yield components, we need to take a weight fac-
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(a) Histogram VSP (b) Histogram SMPH

Figure 13: Histogram of the percentage gain of visible berries after yield removal.

In the VSP we observed 35 plants, with a maximal gain in berry visibility of 300%.

Therefore we chose a bin size of 25%. For the SMPH we observed 28 plants, but

the spread goes up to 1900%, we chose a larger bin size of 50%.

tor into account, in our case a mean berry weight which was averaged over

three years. This weight factor was extracted from manual measurements,

by weighing multiple grape bunches over three years and for both training

systems. With this information we determined an average weight per berry

at harvest time which poses the weight factor for our yield estimation. In

our case the berry weight was estimated as 1.53 g and was very homogeneous

over the different years with a standard deviation of 0.13 g. This corresponds

to 8.4% of the estimated mean berry weight.

Fig. 16 shows three attempts to estimate the yield for 20 plants in the

VSP. In a first attempt, we directly multiply the mean berry weight with the

number of visible berries, which corresponds to a visibility factor P vis = 0.

This leads to an underestimation of the yield. We achieve an MAE of 1.19

kg (88.15%) and and MSE of 1.38 kg (101.62%). In a second attempt, we

double the number of visible berries to account for the parts which are not

seen by the camera (P vis = 1). This decreases the MAE to 0.78 kg (28.95%)
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Figure 14: The plot shows the number of visible berries with respect to the yield at the

end of the season in kg for the VSP. The orange stars show plants observed in 2018, blue

plus in 2019 and violet circles in 2020.

and the MSE to 1.00 kg (37.06%). And lastly, we add 70% of the number

of visible berries (P vis = 0.7), following the leaf occlusion experiment, which

yields a MAE of 0.67 kg (27.37%) and an MSE of 0.87 kg (36.05%). For all

experiments the correlation between the predicted and estimated yield is the

same, R2 = 0.69. Since the berry weight is a constant factor with relation

to the berry number, the spread of the results is not affected, only the MAE

and MSE change.

For SMPH, the relationship between the number of visible berries and

yield is not as obvious, as indicated by the greater variation between the

number of visible berries and the yield within years (see Fig. 15a). This is

especially prominent for 2019, where the berry numbers are relatively small

but the yield has a great range compared to the other two years. This further
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(a) berry number vs. yield (b) 6 ·Nvis ·W b

Figure 15: The left plot shows the number of visible berries with respect to the

yield at the end of the season in kg for the SMPH. The orange stars show plants

observed in 2018, blue plus in 2019 and violet circles in 2020. The right side shows

the correlation between the estimated yield from the number of visible berries with

respect to the reference yield.

strengthens our observation of the high variability of the leaf occlusion for

the SMPH.

4. Discussion

Most berry detection approaches investigate plants trained in the VSP

or similar training systems. Therefore the regions of interest are focused on

the lower part of the canopy and were observed with a single camera, either

handheld (Aquino, Diago, Millan and Tardaguila, 2016), stationary (Diago

et al., 2012) or mounted on moving sensor platforms (Nuske et al., 2014),

(Aquino, Millan, Diago and Tardaguila, 2018). Our system differs in this

respect, since we covered most of the vertical canopy. This was motivated

by the fact, that for the SMPH most berries grow in the upper part of the
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(a) Nvis ·W b (b) 2 ·Nvis ·W b (c) (Nvis +0.7 ·Nvis) ·W b

Figure 16: Correlation between the actual yield and the predicted yield. On the

left we multiplied an average berry weight W b with the number of visible berries

Nvis. In the middle we doubled the number of visible berries to account for the

non visible parts. On the right we added 70% of the number of visible berries.

canopy.

The vertical overlap was realised with the usage of three cameras which

were positioned on top of each other. This is comparable to other works

which investigated the influence of multiple viewpoints on the fruit detec-

tion (Hemming, Ruizendaal, Hofstee and Henten, 2014, Kurtser and Edan,

2018a). In our case we did not tackle an active viewpoint planning, but make

use of the vertical camera positions to select the image which offers the best

view of the crops. In our case this means that we select the matched image

patch with the highest count of visible berries.

Besides a vertical overlap, the approaches working on field phenotyping

platforms have different methods to handle redundant information in the

horizontal direction, caused by the movement of the sensor platform. For

example, (Aquino, Millan, Diago and Tardaguila, 2018) used a consumer
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software to match image regions with approximately 50% overlap before the

processing stage. (Nuske et al., 2014) on the other hand projected the berry

candidates onto a local fruit wall. Both approaches worked well for simple

geometries with little variations. In these cases the vines were partly defoli-

ated and the grape bunches fully visible. We chose to select images based on

the recording position, to achieve a minimal overlap between images. Espe-

cially the projection onto a local fruit wall would be difficult for the SMPH

with it’s loose and complex bunch structure in combination with the small

berry size.

Another important aspect besides the vertical and horizontal coverage of

the rows is the visibility of the investigated yield components. In our case,

the state of occlusion when acquiring images in vineyards is a crucial point

for the accuracy of berry number detection. Furthermore the occlusion is

highly dependent on the training system. As we showed, plants trained in

the SMPH system have a very high and variable rate of occlusion as they

are not defoliated manually at any stage of the growing season. (Kliewer

and Dokoozlian, 2005) used the leaf area/ crop weight ratio as a mean to

investigate the wine quality. Diago et al. (2012) performed leaf removal

experiments in order to evaluate different leaf areas and cluster exposures.

Pereira, Morais and Reis (2018) performed a leaf segmentation with the later

goal of a variety classification based on leaf characteristics. Gao et al. (2020)

classified the images in different occlusion stages and used theses as a decision

base for the fruit picking strategy of apples. Similar to this, Koirala et al.

(2021) investigated 5 different methods for the estimation of mango tree fruit

load. They found that the automatic estimation of an occlusion factor per
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tree was necessary due to high variability between trees. This however was

hard to achieve since no direct correlation between the number of partly

occluded and fully visible fruits could be found. The further explored the

potential of the direct estimation of fruit count per tree based on the count

of fully exposed and partly occluded fruit, as well as the canopy area and

achieved good results within one growing season, but failed to extend their

approach to another season. We performed leaf occlusion experiments over

two years. A yield estimation is highly dependent on the number of visible

yield components, in our case the berry number. Therefore the ratio of

invisible berries compared to the visible berries is a crucial factor. In the

scope of our experiments we saw, that the ratio of invisible berries varied

greatly between the two different training systems and even the years. The

influence on the plants trained in the VSP was smaller, since a large portion

of berries was already visible due to defoliation of the fruit zone after fruit set

and the fact that most berries grew in the lower part of the canopy and were

therefore not covered. The case was different for the plants in the SMPH. The

variation within the training system was very large, ranging from 100% up to

nearly 2000%. This is also reflected in the mean occlusion and the respective

standard deviation. Both values are exceptionally large which also reflect on

the large variability of the occlusion. This makes any attempts at estimating

the yield based on the number of visible berries extremely challenging.

For VSP systems, on the other hand, there are several different defolia-

tion stages done in viticulture practice. From no defoliation up to a complete

defoliation of the fruit zone. In our study, a moderate defoliation of the fruit

zone was performed after fruit set, leading to a partially defoliated fruit zone
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due to regrowth, a method often used in German viticulture. Nuske et al.

(2014) for instant used images with a fully defoliated fruit zone achieving an

average error between 3% and 11% of total yield and thus, obtained more ac-

curate results compared to our pipeline. Nevertheless it was very important

to us to do the image acquisition under German viticulture standard con-

ditions rather than under trail specific optimised image standardisation, in

order to get an idea how this method could be transferred into an application

used in viticulture practice.

Apart from the berry visibility the estimated weight factor plays a role

for the yield estimation. We estimated the berry weight by averaging the

measured berry weight over three years, resulting in a berry weight W b =

1.53g± 0.13g. The standard deviation is 8.4% of the estimated weight. This

agrees with Clingeleffer et al. (2001) who stated that the main factor for

grapevine yield estimation is the number of berries, which account for 90%

of the yield variation, while only 10% are influenced by the berry weight.

We chose the highest number of visible berries in the VSP as a worst case

scenario. For 2000 visible berries, the predicted yield without considering

the leaf occlusion would be 3060 g. Since the weight factor is constant for

the yield estimation. A reduction of 10% of the berry yield would lead to an

estimate of 2754 g while an addition of 10% leads to 3.366 g. In comparison,

taking into account the leaf occlusion with a visibility factor of 70% increases

the yield by more than 2 kg, to 5202 g. Therefore the estimation of the leaf

occlusion has a bigger impact then the variation of the berry weight.

For the VSP, we attempted an early yield estimation with the number

of visible yield components and a factor which accounts for the invisible
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berries. We tested three different approaches, correlating the number of vis-

ible berries and the reference yield directly and accounting for two different

visibility factors , P vis = 1 und P vis = 0.7, for the number of invisible

berries. In the end we achieved a MAE of 27% for P vis = 0.7 in comparison

to the reference yield. Our machine-driven approach showed the same accu-

racy compared to forecasts done by winegrowers, while being non-destructive,

automatic and fast. Dunn (2010) compared five different yield forecasting

methods at different points in time and showed that the mean absolute dif-

ference between winegrowers forecast and actual production was, with the

best method, around 30% as well. After analysing many growers forecasts,

Dunn and Martin (2003) suggested that although growers have a good un-

derstanding of average production over time they fail to adjust their forecast

to the actual production of the year.

There are two ways to improve our yield forecast. One option is the im-

provement of the accuracy of berry detection. We assume that this would

only lead to a small improvement, since the berry detection itself already

achieves very good results. We identify the occlusion of yield parameters

through leaves as the main limiting factor. The improvement of this could

be the other option, e.g. by adaptions in the VSP system using a more defo-

liated management system. Approaches which were developed for view point

planning in horticulture, especially applications for sweet pepper harvesting

(Kurtser and Edan, 2018b, Harel, van Essen, Parmet and Edan, 2020) would

be difficult to extent to viticulture. Furthermore the goal is not interaction

with the crop, e.g. harvesting, but the observation.
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5. Conclusions

We presented a yield estimation pipeline, which is an extension of an

image based berry detection method from an earlier paper (Zabawa et al.,

2020). We extended the method to work on horizontally and vertically over-

lapping images taken with a multi-camera system on a moving platform, the

Phenoliner. We collected an extensive dataset of 767 plants (including 3

genotypes) planted in 15 rows, featuring two different training systems. All

of them were observed over three years and destructive yield measurement

of selected plants were performed. We evaluate the system on plant level

with manual annotations and showed, that our systems achieves a MAE of

the berry counting on plant level between 6 - 8% compared to the reference.

Furthermore we showed that the results are reproducible and stable over

multiple data collection processes.

We also analysed the influence of the leaf occlusion by dedicated exper-

iments. We were able to show that the leaf occlusion in SMPH training

systems has such a high variability that a relation between the number of

visible berries and the yield is not possible. In VSP systems however, we

were able to achieve an MAE of 26% for the yield estimation.

This is to be expected, since the estimation of yield is highly dependent of

the amount of visible yield components. This visibility factor is the limiting

factor for the estimation while the berry weight does not play a major role in

comparison. The actual detection of the visible berries is the most uncritical

part.

A way to improve our yield estimation would be to enhance the visibility

of these components through management decisions regarding the leaf and
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grape occlusion.
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