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1 | INTRODUCTION

In recent years, the ban on neonicotinoid insecticides within
the European Union has resulted in the resurgence of aphid-
transmitted plant viral diseases that were previously well con-

trolled in sugar beet (Hossain et al., 2021). Virus yellows (VY) is a

Abstract

This study investigates the potential of high-resolution (<0.5 cm/pixel) aerial imagery
and convolutional neural networks (CNNs) for disease incidence scoring in sugar
beet, focusing on two important aphid-transmitted viruses, beet mild yellowing virus
(BMYV) and beet chlorosis virus (BChV). The development of tolerant sugar beet cul-
tivars is imperative in the context of increased disease management concerns due to
the ban on neonicotinoids in the European Union. However, traditional methods of
disease phenotyping, which rely on visual assessment by human experts, are both
time-consuming and subjective. Therefore, this study assessed whether aerial mul-
tispectral and RGB images could be harnessed to perform automated disease ratings
comparable to those performed by trained experts. To this end, two variety trials were
conducted in 2021 and 2022. The 2021 dataset was used to train and validate a CNN
model on five cultivars, while the 2022 dataset was used to test the model on two
cultivars different from those used in 2021. Additionally, this study tests the use of
transformed features instead of raw spectral bands to improve the generalization of
CNN models. The results showed that the best CNN model was the one trained for
BMYV on RGB images using transformed features instead of conventional raw bands.
This model achieved a root mean square error score of 11.45% between the model
and expert scores. These results indicate that while high-resolution aerial imagery and
CNNs hold great promise, a complete replacement of human expertise is not yet pos-
sible. This research contributes to an innovative approach to disease phenotyping,
driving advances in sustainable agriculture and crop breeding.
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disease complex caused by different virus species that are trans-

mitted by the green peach aphid (Myzus persicae). These virus

species include two poleroviruses from the Solemoviridae family,

beet mild yellowing virus (BMYV) and beet chlorosis virus (BChV),
a closterovirus from the Closteroviridae family, beet yellows virus
(BYV) and a potyvirus from the Potyviridae family, beet mosaic
virus (BtMV) (Hossain et al., 2021). Of these, BMYV and BChV
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have emerged as significant threats to sugar beet cultivation in
Europe, causing yield losses of up to 23% and 24%, respectively
(Hossain et al., 2021). In the absence of neonicotinoid insecticides
for seed coating and subsequent disease control, the development
of resistant cultivars is the most sustainable solution (Hossain
et al., 2021). However, developing tolerant sugar beet cultivars is
hindered by the phenotyping process, which has become a major
bottleneck (Mahlein et al., 2019).

Phenotyping plays a pivotal role in the development of tolerant
and resistant cultivars, as it helps in identifying plants with desirable
traits (Yang et al., 2017). Traditionally, this process has been time-
consuming and resource-intensive as it relies on tedious visual exam-
ination carried out by trained experts (Mahlein et al., 2019). Despite
providing insightful data, this method is inherently subjective and
can be inconsistent across experts (Bock et al., 2020). Therefore, the
term ‘ground reference’ is preferred to ‘ground truth’ when referring
to ground data collected by trained experts, as the latter implies that
ground data are error-free (Justice & Townshend, 1981). The urgent
need to accelerate and enhance the objectivity of breeding resis-
tant sugar beet cultivars requires a paradigm shift in phenotyping
approaches (Mahlein et al., 2019).

Contributing to such a shift might be the rapid evolution of un-
manned aerial vehicle (UAV) technologies, integrated with increas-
ingly sophisticated data analysis approaches including machine
learning (ML) and deep learning (DL), which provides an innovative
solution to the challenges posed by traditional phenotyping meth-
ods (Soori et al., 2023). UAVs equipped with high-resolution cameras
(<0.5cm resolution) have the potential to capture detailed informa-
tion on plant health status swiftly and objectively. By leveraging ML
and DL techniques, these images can be systematically and automat-
ically analysed, eliminating the subjectivity associated with human
evaluations (Bock et al., 2022; Mahlein et al., 2019).

Several studies have explored the potential of UAVs for stress
phenotyping applications. For example, a study by Trapp (2015)
compared tolerant and susceptible recombinant inbred lines of
dry bean under terminal drought conditions using high-resolution
multispectral images. Plot-to-plot comparison of the green nor-
malized difference vegetation index (GNDVI) with yield data re-
sulted in a strong correlation (r=0.79, p=0.01). Another study
by Chivasa et al. (2020) evaluated 25 maize varieties grown in a
trial inoculated with maize streak virus. Multispectral images were
analysed using random forest (RF) models. Correlations between
the UAV-derived data and manual maize streak virus scores were
significant (r=0.74-0.84). Barreto et al. (2023), with overall ac-
curacy values of up to 85.8%, established a pipeline based on ML
methods to extract disease-relevant parameters for Cercospora
leaf blight in sugar beet phenotyping. Ispizua Yamati et al. (2024)
also used UAV multispectral and RGB images combined with dif-
ferent ML and DL approaches, including convolutional neural
network (CNN) models to score Rhizoctonia crown and root rot
severity on sugar beet. In this study, precision values ranging from
0.73 to 0.85 could be achieved for Rhizoctonia crown and root rot

scoring.
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While the promise of UAVs and ML/DL for disease phenotypin%’
is compelling, it is essential to acknowledge that their effectiveness®
varies depending on the particular model and pathosystem consid%
ered (Dhaka et al., 2021). As the ML and DL approaches are empiricag’

modelling procedures, large volumes of data are needed to capturegg{I>
[a]
often complex, dynamic and variable phenomena. Furthermore

M

while DL techniques such as CNNs are considered cutting-edges
image analysis methods, cases exist where they have been out;
performed by older and less complex ML methods (Li et al., 2020)%
Therefore, each plant-pathogen interaction may necessitate tailored=.

53
approaches for accurate disease assessment.

Aiea

This study aims to develop a CNN-based approach for automatic§
incidence scoring of virus yellows disease in sugar beet and to evalg
uate the effectiveness of this proposed approach. In this study, wé
explore the utilization of transformed features, as opposed to ravx%
spectral bands, to enhance the generalization of CNNs. To the besi
of our knowledge, this approach has not been extensively investiﬁ
gated in the context of CNNs. Furthermore, unlike most previousf?_|
CNN studies, the model developed in this research was rigorously%>
assessed on a completely independent dataset, reinforcing the credo
ibility of our accuracy assessments. This study ultimately contributesi

to the improvement of phenotyping approaches for the developmgﬂg
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of more tolerant sugar beet cultivars in the post-neonicotinoid erg& g
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2 | MATERIALS AND METHODS 23
2.1 | Study area and experimental design g %
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Data from two different trials were harnessed for the analysis p

sented in this study. In 2021, a virus yellows (VY) variety trial
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conducted on five sugar beet (Beta vulgaris) genotypes (Figure 1)
The experimental site was located in Sieboldshausen, Germany®
(51°28'13” N, 09°54'20" E). The trial was arranged in a two—factoriaff’i
design with four replicates. The two factors were the inoculatiom?.
variant comprising three inoculation strategies (not inoculated, in§
oculated with BMYV and inoculated with BChV) and the genotyp(;_-ivf
(from susceptible to tolerant) comprising five genotypes from thre@
different suppliers (Table 1). Seeds were sown on 3 April 2021, iS
plots (8 x 1.5m) containing three rows of sugar beets, resulting in ap%
proximately 100 plants in each plot. To prevent unintentional virusé
spread by insects, border rows and control plots were sprayed with%
insecticides. To produce viruliferous aphids (M. persicae) for the inoc;
ulation, healthy aphids were placed on virus-infected mother plants%_
that were produced in sufficient quantities in advance in the greeng
house. The aphids were placed on plants infected with the individuaél
viruses for at least 48 h to acquire the virus. The inoculation of plantéz
was conducted on 31 May 2021, with 10 viruliferous wingless aphids:
being transferred to 3% of the plants per plot. Inoculated plants“g
were at the phenological stage corresponding to plants with fouri
unfolded and fully developed leaves (BBCH 14; Meier et al., 2009). 2

Data from another VY cultivar trial, conducted in 2022, o

es9)d1)

-
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two sugar beet genotypes different from those used in 2021, wa

ays Aq pausanof’

@)

€16¢€Ledd/ 111 0L/1op/wodAsmAeiqijauljuo-sjeusnofddsq//:sdiy wouy papeojumoq ‘0 ‘7202 '650£S9EL


javascript:
javascript:

OKOLE ET AL.

Jn‘l‘insw Ag -

T W1 e

FIGURE 1 Composed RGB image

of the first experimental site on 8 June
2021 under sunny conditions. Different
inoculation variants (Control, beet mild
yellowing virus [BMYV], beet chlorosis
virus [BChV]) as well as genotypes
(coded from 1 to 5) are depicted. More
information on the genotypes is given
in Table 1. The discontinuity sign in

the image indicates that the ‘Control’
treatment was further away from the two
other treatments (about 75m).
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TABLE 1 Information about the sugar beet genotypes used in
this study.

Genotype Breeder's code Provider Putative reaction

1 BMYV2021 KWS Tolerant

2 ST-VY220 Strube Tolerant

3 TolSV2020 SES Tolerant

4 ST-VY120 Strube Susceptible

5 ZR 2313 SES Susceptible

harnessed to validate the developed models. The trial included a tol-
erant (T) and a susceptible (S) genotype (Figure 2). The inclusion of
both susceptible and tolerant genotypes provided a high-variability
dataset to develop a more robust model (Tasdizen et al., 2018). The
experiment was carried out at an independent site located in Harste,
Germany (51°36’00” N, 09°52'00” E). For this second experiment,
only data for BMYV was available. Again, the trial was arranged in a
two-factorial design, but this time the factors were the time of inoc-
ulation and the genotypes, with four replicates for each combination.
The time of inoculation included four levels: (a) not inoculated, (b) in-
oculated at the phenological stage BBCH 12 (mid-May), (c) inoculated
at row closure (mid-June) and (d) inoculated 3 weeks after row closure
(mid-July). An overview of the experimental design is presented in
Table 2. For this experiment, plots were sown on 31 March 2022. The
plots had the same dimensions as those in the 2021 experiment and
were separated by a 6 m distance to avoid contaminations between

different virus species tested on the same field location.

2.2 | Visual assessment of VY

In both years, the monitoring of virus symptoms was performed

from June to September (Table 3). The visual assessment was carried

out by an expert standing in front of the plots. During the initial ob-

servation, the number of plants exhibiting yellowing symptoms

ddg
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estimated. This was followed by an accurate counting. Disease in;

dence (DI) was then determined using Equation 1.

freaid s|qe

DI = (No. of plants with symptoms / Total no. of plants assessed) x 10!

Both numbers (Dl values from estimate and counting) were th!

o8] SEOWIWOYoAf
s KoM ATk 1queuIuo

compared (data not shown) and yielded nearly similar values, allo!

$tto

ing for subsequent observations to rely solely on estimates of

EE)
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number of plants displaying symptoms. The yellowing sympto
caused by BMYV and BChV could be distinguished from other type
of yellowing, including those caused by insects and wilt, as they typ—£
ically manifest initially at the leaf margin but subsequently sprea£.

over the entire leaf, as described by Hossain et al. (2021).

2.3 | Image acquisition

A3]IM\ UO (suoiipuod

To allow for automatic scoring, aerial imaging was conducted in adq
dition to manual scoring. The UAV platform was the Matrice 210 (SZ%

[}
DJI Technology Co.). Multispectral images with 1280 x 960 pixels were;

reiqf

captured using the Altum multispectral snapshot camera (MicaSense)

A

The Altum has five multispectral bands including blue (B: 475nm cen
tre wavelength, 32nm bandwidth), green (G: 560nm, 27nm), red (Rg
668nm, 14nm), red edge (RE: 717nm, 12nm) and near-infrared (NI

842nm, 57nm) and an integrated long-wave thermal infrared (TIRg

1 J0.

o'59|

sensor (band range 8-14 um). Images were captured simultaneously oﬁg
the six different cameras in 16-bit raw GeoTIFF format. The capturef
was done at an altitude of 15m above the soil level, with 70% forward%
and lateral overlap and an average flight speed of 0.4m/s, resulting in:,,:I>

an average ground sampling distance (GSD) of 4mm. A grey referencé
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FIGURE 2 Composed RGB image of the second experimental site on 20 May 2022 under sunny conditions. Different inoculation time
points as well as genotypes are depicted. ‘T’ refers to the putative tolerant sugar beet genotype, while ‘S’ refers to the putative susceptibl

one. More information on the time point labels is found in Table 2.

TABLE 2 Summary of treatments for the 2022 trial.

Genotype Inoculation stage Inoculation date
S No inoculation -
BBCH 12 16 May 2022 (46 das)
Row closure 22 Jun 2022 (83 das)
3weeks after row closure 14 Jul 2022 (107 das)
T No inoculation =
BBCH 12 16 May 2022 (46 das)
Row closure 22 Jun 2022 (83 das)

3weeks after row closure 14 Jul 2022 (107 das)

Abbreviations: das, days after sowing; S, susceptible; T, tolerant.

panel, provided by the camera manufacturer, was imaged directly be-
fore and after each flight for radiometric calibration using the empiri-
cal line method (Aasen et al., 2018). To ensure precise georeferencing
and co-registration, ground control points were installed at the corner
points of the field and measured with a real-time kinematics (RTK) po-
sitioning system for referencing the generated map according to its ac-
tual geographic location. Eventually, georeferencing errors of less than
0.1cm were achieved for all flights. A total of six flights in 2021 and five

in 2022 were conducted as reported in Table 3. Flight missions were

RapimAseaquaunjuo//:sdiy) suonipuor pue su.ue_|_-aL|1 23S '[#202/,0/SL] uo Kieiqr] auiuo As|Ip ‘Ydieasay 199g Jebns 104 33
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always within +8days of visual scoring dates to allow for comparis

adh
[olo)

All flight missions took place close to solar noon between 11:00Al

and 1:00PM, with sunny weather and rare occurrence of clouds.

2.4 | Image processing

241 | Orthomosaic generation

uo (suompuo:-pue-sw:a;/%

The UAV imagery was processed using Agisoft Metashape v. 1.8.%
(Agisoft LLC). The workflow for orthomosaic generation involved im:é
porting images, aligning them, generating a dense point cloud, adding%
ground control points, performing radiometric correction, building ar;
digital elevation model (DEM), generating an orthomosaic and exportg
ing it as a tagged image file. For all these steps, preconfigured set:;h
tings from the Metashape Professional User Manual v. 1.8 (Agisoﬂé
LLC, 2022) were used with slight modifications as reported in Table Sl.rg|>

2.4.2 | Extraction of images of single plants

sa|dIMe YO ash K

Before training a supervised CNN classification model to disting,

guish between healthy and diseased plants, individual sugar beeg

ay3 Aq pausano
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TABLE 3 Visual scoring and unmanned

. . . Days of Crop phenological
aerial vehicle (UAV) mission dates. Year Visual scoring UAV mission difZerence stagpep :
2021 - 8 Jun 2021 (10 dai) - BBCH 37
28 Jun 2021 (30 dai) 28 Jun 2021 (30 dai) BBCH 39
13 Jul 2021 (45 dai) 13 Jul 2021 (45 dai) BBCH 39
28 Jul 2021 (60 dai) 3 Aug 2021 (66 dai) +6 BBCH 39
9 Sep 2021 (103 dai) 2 Sep 2021 (96 dai) -7 BBCH 39
- 29 Sep 2021 (123 dai) - BBCH 39
2022 = 20 May 2022 (50 das) = BBCH 17
22 Jun 2022 (83 das) 23 Jun 2022 (84 das) +1 BBCH 39
7 Jul 2022 (98 das) = = BBCH 39
22 Jul 2022 (113 das) 19 Jul 2022 (110 das) =3 BBCH 39
4 Aug 2022 (126 das) = = BBCH 39
17 Aug 2022 (139 das) 24 Aug 2022 (146 das)  +7 BBCH 39
1 Sep 2022 (154 das) = = BBCH 39
15 Sep 2022 (168 das) 23 Sep 2022 (176 das)  +8 BBCH 39

) WLy

Jsu| Ag -

b

Note: Phenological stage BBCH 17 refers to the stage where plants have seven unfolded leaves,
BBCH 37 refers to the stage where leaves cover 70% of the ground and BBCH 39 refers to the
stage where leaves cover 90%-100% of the ground.

Abbreviations: dai, days after inoculation; das, days after sowing.

plants had to be detected and then cropped from the orthomo-
saic. Our approach, developed in Python v. 3.8 (Python Software
Foundation, 2021), used a modified version of the workflow by
Gunder et al. (2022) for individual plant detection. Modification
included the removal of the Hough transform-based row detec-
tion algorithm, which in our case resulted in the omission of many
sugar beet plants. After plant centroid detection using the approach
by Ispizua Yamati et al. (2024), individual sugar beet plants were
cropped around the centroid position. A ground distance of 22.5cm
was considered on either side of the plant to crop a 45cm square
image around the centroid of the plant. This image size allows the
incorporation of an adult plant's largest approximated surface area
(Ispizua Yamati et al., 2024). For further processing, these images
were assigned to classes according to the variety, the inoculation

variant and the ID of the plot they were cropped from.

2.4.3 | CNN modelling and training

A CNN was used for the classification. The architecture of the CNN
model was similar to that of AlexNet (Krizhevsky et al., 2017), which
proved to be suitable for other disease classification tasks (Saleem
et al., 2019), with slight modifications as presented in Table S2. To
build the training dataset, two replicate plots out of four were con-
sidered for each genotype. The other two plots were left for valida-
tion. Images that were cropped from inoculated plots were assessed
visually for symptoms and were labelled as ‘Diseased’ if yellowing
and necrotic symptoms were present. The same was done for noni-
noculated plots and the images were assigned to the ‘Healthy’ class.
Eventually, the dataset was made of 5801 images, of which 3352
belonged to the class ‘Healthy’, 1722 to the class ‘BChV’ and 727 to

exjdde
o//:sdhy) suonipuo) pue swud] ayYl 89S ‘[202/20/SL] uo Ateiqr] auljuQ As|Ip ‘Ydaeasay 19ag Jebns o4

the class ‘BMYV'. To improve the generalization ability and to b

ance the model, data augmentation was applied (Wong et al., 201

o)

This included random rotations, shifts and slight zooms and even

ally 5000 images were obtained for each class. In total, four diff

a/\gea

i3

ent models were trained, including two for each disease (i.e., BC
and BMYV).

For each disease, one model was constructed using only the R

sowwo
.F&quau

afdiaoR
03%KaiMA

bands of the Altum camera and the other model was built by ¢ .
sidering all bands of the Altum camera, except the thermal. Th
models are later referred to as RGB-based and multispectral-based8

models, respectively. At this point, a choice of the type of training®

wiidy/

features had to be made. After a first evaluation using raw spectraf:.,
bands (i.e., red, green, blue, ...), it was noticed that the models did noin?.
achieve a good validation accuracy (results not shown). Therefore§
the final models were trained on preprocessed features instead of%f
raw spectral bands. The latter approach showed a more robust valé
idation accuracy. For RGB-based models, three features were comS
puted, namely hue (H; Equation 2), saturation (S; Equation 3) ant%
green leaf index (GLI; Equation 4). For multispectral-based modelsé
four features were computed, among which were the hue and sat%
uration as before, and the optimized soil-adjusted vegetation inde)&
(OSAVI; Equation 5) and the normalized difference red-edge (NDREg
index (Equation 6).

0
G'_B ifmax(R,G,B)—min(R,G,B)=0
60 ,
y X Max(RG.B)—min(RG.B) ifmax(R.G,B)=R
=1 %0 B-R

*\ maxRGB)—minRGB) "2) ifmax(R,G,B)=G

R-G ifmax(R,G,B)=B
60X | S x®RGB —minRGE "4

~
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0, if max(R,G,B)=0
S=4 min(R,G,B) herwi 3)
—max(R,G, B)’ otherwise
2G-R-B
Cll=26Tr78 @
NIR — R
OSAVI = QiR+ R7 016 G)
NIR — RE
NDRE = QIRTRE ©

The training process was carried out using the adaptive moment
estimation (Adam) optimizer, with an initial learning rate (Lr), a batch
size and a maximum number of epochs of 0.001, 256 and 100, re-
spectively. Throughout the training, two metrics were continuously
monitored: validation loss, which gauges how well the model is
performing and how close its predictions are to the actual values,
and validation accuracy, which indicates the proportion of correct
predictions relative to the total predictions made on the validation
dataset. The damping factor for the Lr was set to 0.1 with a pa-
tience of three epochs, so that the Lr was lowered by factor 0.1
after three consecutive epochs with no improvement in the valida-
tion loss. Early stopping was also applied with a patience of 7 to
avoid overfitting.

The architecture and weights of the proposed CNN model were
finally stored as a hierarchical data format (H5) file for further vali-

dation processes.

244 | Visual assessment of CNN models

While deep learning models are often regarded as black box models
(Bilbrey et al., 2020), it is possible to reveal and visualize the features
in the image that have relevance for the classification. For a visual
explanation of models in this study, the gradient-weighted class acti-
vation mapping (Grad-CAM) method was used (Selvaraju et al., 2017).
Here, the final convolutional layer is converted into a localization map
that indicates significant image areas for predicting a specific class (in
this situation, ‘diseased’). These localization maps were then plotted
as heat maps to visually assess whether the model selects areas that

can be biologically linked to the examined disease symptoms.

2.4.5 | Accuracy assessment (validation and testing)
As the data was pooled and analysed from two different datasets,
the accuracy assessment of the model was also done based on this
background. A thorough accuracy assessment should include vali-
dation and testing. During the validation phase, the model's perfor-

mance is evaluated on a separate dataset not used during training,

'S 104 J1n3su|

ensuring that it generalizes well to unseen data. This step is vital t%
detect overfitting, where the model performs exceptionally well or
the training data but poorly on new data (Vabalas et al., 2019). Thc-g
testing phase is the final step in assessing accuracy. In this phase,f
the model is put to the ultimate test by evaluating its performancegg(I>
on an entirely independent dataset, distinct from both the training9
and validation datasets. This ensures that the model's accuracy re
mains robust and trustworthy, offering a true reflection of its realé
world capabilities (Malebary & Khan, 2021).

First, validation was done on the two plots per treatment thaﬂé

aulu

were left untouched during model training in 2021 for each assessg
ment date. Secondly, testing was performed using the dataset col§
lected on different genotypes in a different location and setting i@
2022. The CNN model's prediction (i.e., healthy or diseased) was reg
corded for all plant images from the same plot, and disease incidence,%)

(%) in each plot was calculated as the ratio of images classified as con*

oS ‘[

taining diseased plants. The resulting scores for each plot were theng
stored in a data frame, along with the ground reference score for thed

same plot, for further agreement analyses between the two scores.

2.5 | Statistical analysis

@eoldde

An analysis of variance (ANOVA) was carried out to test the effec

2y 9

the genotype on disease incidence across different blocking fact

(i.e., inoculation variant, inoculation time point). The agreement

ffuo//:sdfy) Suonipuoy pue swisy

3 angea

tween the model-derived score and the ground reference score

assessed by fitting a linear function, using metrics such as the slo

gpuiio

YTV T3Te TN

the Pearson correlation coefficient (1), the coefficient of determi

28 S

tion (R?) and the root mean squared error (RMSE) as indicators

the performance. In addition, Lin's concordance correlation coe

o 9stte
tho

cient (CCC) was computed to account for both precision and bi

By

(Lin, 1989). All statistical analyses were performed in R software

%w

Core Team, 2016), and all analyses involving comparisons of mean

were carried out using the ‘agricolae’ package (De Mendiburu, 2014)

>-pue

Additionally, disease development was analysed by fitting diseaseS
progress models to the data using the ‘epifitter’ package in R (AIvesgtf
& Del Ponte, 2021). Four models of disease progression were fitte@
to the incidence data. These models were the Gompertz, Iogisticg
exponential and monomolecular models. The coefficient of deter%
mination was used to select the best-fitting model (in our case, th%
logistic and Gompertz models for the years 2021 and 2022, respec%
tively). The infection rate (IR) value derived from the model was then‘_2

used to compare different disease evolution dynamics.

3 | RESULTS

3.1 | Disease development in different trials

13e YO ‘asn Jo sa|nJ 1oy Aieaqr

First, only the expert-based incidence and disease progression ares

S

outlined, without linking them to the CNN-based scoring. The re,

sults of the expert-based disease incidence scoring for the yearg
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2021 and 2022 are presented in Figures 3 and 4, respectively.
During the rating period in year 2021, the different genotypes
showed a heterogenous response to BMYV and BChV. Although
the most tolerant genotype to BMYV was also the most tolerant
to BChV, the two diseases showed slightly different dynamics over
the growing season. For BMYYV, differences in expert-based scores
were observed as early as 30days after infection (dai) (p=0.046),
while for BChV, the first significant differences across genotypes
were only detected at 45 dai (p=0.050). Later in the season (60 dai),
no more significant differences could be observed across genotypes
for BMYV (p=0.272), whereas for BChV, the difference was still sig-
nificant (p=0.039). Towards the end of the growing season, disease
incidence was severe for all genotypes except for BMYV on geno-
type 1, which had a significantly lower incidence compared to other
genotypes (p=0.045).

For the year 2022 (Figure 4), only BMYV was used to inocu-

late one susceptible and one tolerant genotype at different time
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points, which were approximately 1month apart from each other‘g
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As expected based on infection rate (IR) values (Table 4), the dis&
ease developed faster for the treatments that were inoculated earg
lier (mid-May). For this inoculation time point, the disease developec@’
faster in the susceptible genotype (IR=0.112) compared to the tolg
erant one (IR=0.036). Although at the end of the season the disease%
incidence was the same for both the tolerant and the susceptiblez
genotypes reaching 100% (p=0.185), the progression of the dis;
ease was different. Delaying the inoculation time point by approx%
imately 1month (mid-June) had a significant effect on the diseasdc-;
dynamics. The infection rate was dramatically reduced for both the&’
susceptible (IR=0.023) and the tolerant (IR=0.015) genotype com-§
pared to early inoculation (mid-May). A significant difference beg
tween the two genotypes could only be seen towards the end of thé
season (p=0.027, p<0.001 and p=0.027 at 126, 154 and 168 day%
after sowing [das], respectively). Further delaying the inoculatior‘ri

time point by 3weeks (mid-July) made the difference between theb
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FIGURE 3 Temporal development of disease on different genotypes following beet chlorosis virus (BChV) and beet mild yellowing
virus (BMYV) inoculation (experiment in 2021). The numbers in the legend and the corresponding colour relate to the different genotypes

described in Table 1. Dai, days after inoculation; Gen, genotype.
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FIGURE 4 Temporal development of beet mild yellowing virus (BMYV) in 2022 in a susceptible (S) and tolerant (T) sugar beet variety
inoculated at different time points (‘No inoculation’, ‘Mid-May’, ‘Mid-June’ and ‘Mid-July’, as explained in Table 2). The numbers on the x-axis

indicate the number of days after sowing. Gen, genotype.

tolerant and the susceptible genotype unnoticeable (p>0.05 for all
dates). Furthermore, the progression of the disease score for this
last inoculation time point was almost similar to noninoculated treat-
ments (IR=0.016-0.022). This anticipated reduction in infection
rates is likely to be due to the shorter time left for disease develop-
ment and less conducive climatic conditions for disease transmission
by the aphid when inoculation occurs late in the growing season. The
variability in the dataset due to different infection rates ultimately

permitted a comprehensive assessment of the CNN model.

3.2 | Evaluation of the predictive ability of the
CNN models

In this section, differences between RGB and multispectral data will
be reported. The accuracy and loss curves during training of the CNN

models used to discriminate healthy plants from those infected with
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BChV and BMYV are reported in Figure 5. The models were built onz:
RGB or multispectral images and achieved, on average, high over@
all accuracy (>95%) on the validation set and low loss (<0.2) afterS
approximately 10 epochs, regardless of the disease. However, for%
BChV, the multispectral-based model showed better performanc%
as indicated by its lower loss compared to the RGB-based model%
Conversely, for BMYYV, both the RGB-based and the multispectralg

based model showed similar performance.

Kieiq

By analysing, the activation maps of the last convolutional layerg
produced by the Grad-CAM method (Figure 6), it was observed thaé
the multispectral-based model for BChV relied on visible necrotidz
and chlorotic windows (highlighted by white circles in the image) to:::
make its predictions. In contrast, the RGB-based CNN model reliedg
on other features besides visible symptoms (highlighted by red cir—f
cles). For the BMYYV disease, the RGB-based model relied on ViSib|GE's_"'
symptoms to make its predictions, while the multispectraI—based":iI>

model sometimes based its decision on visible symptoms and othe@
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blocking factors (i.e., inoculation variant, inoculation time point).

Year Inoculation variant Genotype Model

2021 BChV 1 Logistic
BChV 2 Logistic
BChV 3 Logistic
BChV 4 Logistic
BChV 5 Logistic
BMYV 1 Logistic
BMYV 2 Logistic
BMYV 3 Logistic
BMYV 4 Logistic
BMYV 5 Logistic
Control 1 Logistic
Control 2 Logistic
Control 3 Logistic
Control 4 Logistic
Control 5 Logistic

Year Inoculation time Genotype Model
point

2022 No inoculation S Gompertz
No inoculation T Gompertz
Mid-May S Gompertz
Mid-May T Gompertz
Mid-June S Gompertz
Mid-June T Gompertz
Mid-July S Gompertz
Mid-July T Gompertz

Note: Four models were fitted for each case, namely Gompertz, logistic, exponential and monomolecular, and only the best model was retained. Th

genotypes for 2021 are coded from 1 to 5 and are further described in Table 1.

Abbreviations: BMYV, beet mild yellowing virus; BChV, beet chlorosis virus; IR, infection rate; IR_ci_lwr (95%) and IR_ci_upr (95%), lower and upper
limits of the 95% confidence interval for the IR estimate, respectively; IR_se, standard error of the infection rate; S, susceptible; T, tolerant.

times on irrelevant features in the image (i.e., shadows and healthy

tissues).

3.3 | Comparison between automatic scoring of the
disease using a CNN and expert-based scoring

Figure 7 outlines the comparison between the expert-based disease
scores and the model-based disease scores for different diseases
and different input image types derived from the year 2021 (vali-
dation dataset from the same experimental setup as training data).
In general, all model-based scores showed a good agreement with
expert-based scores (RMSE <16%, CCC>0.90), with the models for
BChV being on average more accurate (RMSE<11%, CCC>0.94).
As expected from the visual assessment of the CNN models for
BChV, a slightly better performance was obtained from multispec-
tral images (RMSE=10.5%, CCC=0.954) compared to RGB images
(RMSE=10.89%, CCC=0.946). In contrast, the performance of the
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TABLE 4 Disease development models fitted to disease incidence data for different sugar beet genotypes in both trials across different
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CNN models for BMYV did not follow the predictions of the vis§

Q.

ual assessment. In this case, multispectral images (RMSE:15.35%gI
CCC=0.904) showed a slightly higher performance than RGB image@
(RMSE=15.7%, CCC=0.901), although the activation map showedS

that the multispectral-based model made its decision based on bio=

dIM

logically unexplainable features. All CNN models except the RGB%
based model for BChV tended to underestimate disease incidence.

3.4 | Testing the CNN models
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The CNN models for BMYV were further evaluated using a data—g
set collected in the year 2022, from a different location and with&
a different experimental setup. The results of this evaluation are“:‘)
presented in Figure 8. Although the multispectral-based model per—i
formed well in the first year (RMSE=15.4%, CCC=0.904), this Situ%
ation was inverted in the second year (RMSE=42.9%, CCC:O.384§

compared to the RGB-based model, which showed an even bette@
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FIGURE 5 Accuracy and loss curves during training of CNN classification models for beet chlorosis virus (BChV) and beet mild yellowing

virus (BMYV).

True color

RGB

Multispectral

FIGURE 6 Activation map of the last convolutional layer of CNN classification models for beet chlorosis virus (BChV) and beet mild
yellowing virus (BMYV). Two example images are shown for each disease. Regions where visual symptoms align with activation maps are
circled in white, while areas displaying discrepancies, such as detection of shadow and healthy tissues as symptoms or failure to detect

specific symptoms, are circled in red.

performance in the second year (RMSE=15.7%, CCC=0.901 in year
2021 vs. RMSE=11.4%, CCC=0.911 in year 2022). This observation

aligns with the prediction of the activation maps, which showed that
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the RGB-based models learned relevant features for the diseases’

However, although RGB-based models showed high accuracy, ther

were still some underestimations (6/128) and overestimations (1/128
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FIGURE 7 Comparison between (a) BMYV scoring with RGB (b) BMYYV scoring with Multispectral
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4 | DISCUSSION

This research was undertaken to assess the potential of UAVs and
CNNs for disease incidence scoring in sugar beet phenotyping, spe-
cifically for BMYV and BChV. A dataset collected in 2021 was used
to train a CNN model, while another dataset collected in 2022, in a
different experimental setup and with only BMYV, was used to test
the trained CNN model in real-world conditions. In addition, the use
of RGB images versus multispectral images as input data to the CNN
model, as well as the use of transformed features for training CNN
models, were compared.

The research outcomes shed light on the potential of UAVs for
advancing disease phenotyping precision in sugar beet breeding.
Our most effective CNN model, trained to score disease incidence
on RGB images for BMYV in 2021, showed good generalization
abilities when evaluated on a hold-out validation dataset in the
same year (RMSE=15.7%, CCC=0.904). In addition to the con-

ventional practice of testing the model on a hold-out dataset,

25 50 75
UAV-based disease incidence [%)]

our model was tested on a distinct dataset from 2022, charac-
terized by a different experimental setup and with different gen-
otypes and exhibited even better performance (RMSE=11.43%,
CCC=0.911).

Achieving high performance on previously unseen data is a
noteworthy outcome. Such an outcome can be attributed to several
factors, including (a) an initial training dataset with substantial vari-
ability (Therrien & Doyle, 2018), (b) the application of image process-
ing techniques, such as data augmentation (Thanapol et al., 2020),
which artificially augments the training dataset's variability, or (c) the
training of the model on transformed features (Liu et al., 2020) that
are less dependent on conditions that are specific to the training
dataset. In our case, the model's robustness results primarily from
the utilization of data augmentation techniques, such as random
image rotation, flipping, zoom in and zoom out, and, to a greater ex-
tent, from the utilization of transformed features instead of the orig-
inal spectral bands. When the model was exclusively trained on the

original spectral bands, it demonstrated strong performance on the
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FIGURE 8 Comparison between expert-based disease incidence and unmanned aerial vehicle (UAV)-based disease incidence in the

year 2022 (second experiment in a different location). The coefficient of determination (R?), the correlation coefficient (r), the root mean
square error (RMSE) and Lin's concordance correlation coefficient (CCC) are indicated in the figure. Plots where the score has been correctly
estimated by the model (less than 15% difference) are shown in green, while overestimated and underestimated ones are shown in blue and
red, respectively. The 1:1 line indicating perfect agreement is shown with a grey dashed line. (a, b) Beet mild yellowing virus (BMYV) with

RGB and multispectral images, respectively.

hold-out subset from the same year. However, it was unable to gen-
erate accurate predictions and generalize effectively to the dataset
from the following year (results not shown). In contrast, employing
transformed features such as the HSV colour space (hue and satura-
tion only) and vegetation indices, which exhibit minimal sensitivity to
variations in weather and lighting conditions (Purkis & Klemas, 2011),
yielded a more resilient model capable of robust generalization to
unseen data. Although feature transformation has been extensively
explored and appreciated in the field of conventional machine learn-
ing, it remains relatively underexploited in the field of deep learning
(Gowda & Yuan, 2019). A study by Krishnaswamy Rangarajan and
Purushothaman (2020) showed that using the RGB colour space
was better than using the YCbCr colour space to classify eggplant
diseases, with overall accuracies (OAs) of 94.7% and 87.8%, respec-
tively, when using pictures taken in laboratory conditions where
illumination effects are minimal. When images taken in field condi-
tions were used instead, both models showed similar performance
(OA=99.4%).

The ability to achieve good results on previously unseen data,
particularly in the context of changing experimental conditions and
genotypic diversity, reflects the promise of data augmentation tech-
niques and adequate use of transformed features when training a
CNN model (Gowda & Yuan, 2019). While data augmentation is well
known and commonly applied, feature transformation has some po-
tential to further improve the accuracy of CNN models, specifically
in the fields of disease detection and diagnosis. In this study, only
colour space transformation and vegetation indices were explored

as feature transformation approaches. Other feature transformation

approaches such as texture features are also worth investigating
to build more robust models. Texture features contain valuable in-
formation related to the spatial arrangement of pixels in an image
(Muneer & Fati, 2020). For disease detection, texture features can
be highly informative, especially in cases where textural variations
are key indicators of disease presence.

In addition, this study emphasizes that although CNNs are often
regarded as black boxes (i.e., they produce outstanding results with
often high accuracy, but the process leading to the result cannot be
logically/mathematically tracked; Schramowski et al., 2020), they
should not be treated as such (Ras et al., 2022). Neglecting the need
to comprehend how CNNs achieve their predictions before deploy-
ing them in practical applications can lead to inaccuracies in the
outputs. In fact, it is highly probable that a model making accurate
predictions based on incorrect assumptions will fail to generalize ef-
fectively to unseen data (Ispizua Yamati et al., 2024).

In this study, we evaluated the generalization ability of the differ-
ent CNN models using the Grad-CAM method. This method uses the
final convolutional layer to generate a rough localization map, which
is subsequently evaluated visually. While quantitatively evaluating
the models' performance (measured by RMSE and CCC) for BMYV
detection, it appeared that the model trained on multispectral data
(Figure 7a, RMSE=15.4, CCC=0.904) performed slightly better than
its RGB-trained counterpart (Figure 7b, RMSE=15.7, CCC=0.901).
However, during the visual evaluation using the Grad-CAM method
(Figure 6), it became evident that the RGB-based model's predic-
tions exhibited greater robustness. This observation was corrobo-

rated when both models were tested on previously unseen data. In

95UdDIT SUOWWO)) dAeal) a|qedidde ayy Aq pautanob ale sapipe YO @sn Jo sa|nJ 1oy Aleiqi] auljuQ A3]IM\ UO (SUORIPUOI-pue-swId}/wod A3 ImAielqijduljuo//:sdny)
SUoRIPUOD pue swld aY3 39S ‘[£202/.,0/SL] uo A1eiqr] aulup As|ip ‘Ydleasay 19ag Jebns Jo4 anmsu| Ag /6L edd/LLLL 0L/10p/wodAsimAseiqauljuo sjeuinofddsg//:sdny wouy papeojumoq ‘0 ‘F202 ‘6S0ES9EL



OKOLE ET AL.

Y wiLey- 2

Plant Pathology

agreement with the results of the visual assessment, the RGB-based
model (Figure 8a, RMSE=11.45, CCC=0.911) performed signifi-
cantly better than its multispectral-based counterpart (Figure 8b,
RMSE=42.9, CCC=0.384).

This result underscores that relying solely on metrics such as
RMSE or CCC for comparing or selecting the best CNN model can
be misleading. It can sometimes happen that the model with the
better RMSE or CCC is inferior when performing visual assessments
and therefore poorly generalizes to unseen data as observed in the
present study. The same observation was made by Lin et al. (2022),
who used the Grad-CAM method to visualize the results of three dif-
ferent CNN models trained to detect grapevine foliar diseases. Their
results showed that using the Fl-score metric to select the best
model would have resulted in selecting the wrong model in terms of
the visualization map. In fact, the model with the highest F1-score
in their study had activation maps that were not focused on disease
symptoms. Surprisingly, the model with the lowest F1-score had its
activation maps precisely focused on disease symptoms, which ulti-
mately resulted in the highest overall accuracy score on the test set.
It is therefore imperative to stop treating CNNs like black boxes and
to perform visual assessment before their practical utilization.

This study also highlights the potential of multispectral and RGB
imaging for disease phenotyping. Multispectral imagery captures a
wider range of spectral information compared to standard RGB im-
aging, enabling the detection of subtle disease-related changes that
may go unnoticed with the naked eye or traditional cameras. This
was particularly evident in the context of BChV, where the symptoms
were not as prominent as in BMYV (Figure 3). Conversely, in the con-
text of BMYYV, where infected plants showed more conspicuous yel-
lowing symptoms, the benefit of using multispectral images instead
of RGB images could not be established. This finding demonstrates
that the decision whether to use multispectral or RGB imagery should
depend on the epidemiology of the specific disease as well.

BMYYV and BChV, while both affecting sugar beet, exhibit unique
characteristics in terms of disease progression and symptom mani-
festation. The research emphasizes that a one-size-fits-all approach
is not adequate when it comes to UAVs and CNNs for disease in-
cidence scoring. Instead, it highlights the necessity of customizing
methodologies, sensor configurations and data processing tech-
niques to suit the distinct behaviours of different pathogens.

Finally, the research findings demonstrate the potential advan-
tages of using UAVs in disease phenotyping and scoring, particularly
in the context of virus yellows (BMYV and BChV) in sugar beet.
UAVs equipped with high-resolution cameras and advanced image
analysis techniques offer several compelling benefits including ef-
ficiency, objectivity, cost-effectiveness and consistency (Mahlein
et al.,, 2019). However, it is essential to acknowledge that the com-
plete replacement of human raters with UAVs may not be straight-
forward and requires careful consideration. In fact, our best model
had a RMSE score of 11.45%, indicating that disease incidence can
be scored within a confidence interval of +11.45%. This means that
genotypes that differ from each other by a score less than 11.45%

disease incidence cannot be accurately scored with the developed

UAV-based approach. This limitation is particularly significant when
dealing with genotypes that exhibit subtle variations in disease
susceptibility.

Complete replacement of human raters by UAVs should be ap-
proached with caution, especially in situations where precise dis-
crimination between closely related disease states or genotypes is
paramount. Instead, a more pragmatic approach involves leverag-
ing UAVs to streamline the assessment process, improve efficiency
and reduce human subjectivity while preserving the role of human
experts to validate results, provide domain-specific insights and
address cases that fall within the margin of error. In summary, our
findings demonstrate the potential of UAVs as powerful tools for
disease phenotyping. UAVs equipped with high-resolution cameras
can swiftly and objectively assess disease incidence, thereby miti-
gating the subjectivity and resource-intensive nature of traditional
human scoring. The development and application of CNN models
further enhance the accuracy and efficiency of disease scoring, of-
fering the promise of rapid advancements in sugar beet breeding.
Nevertheless, the path forward involves a nuanced approach, as
technology should complement rather than entirely replace human
expertise. By harnessing the strengths of both, the phenotyp-
ing of disease-resistant sugar beet cultivars can be expedited and

optimized.
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