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Abstract. The incorporation of a comprehensive crop mod-
ule in land surface models offers the possibility to study the
effect of agricultural land use and land management changes
on the terrestrial water, energy, and biogeochemical cycles.
It may help to improve the simulation of biogeophysical
and biogeochemical processes on regional and global scales
in the framework of climate and land use change. In this
study, the performance of the crop module of the Commu-
nity Land Model version 5 (CLM5) was evaluated at point
scale with site-specific field data focusing on the simulation
of seasonal and inter-annual variations in crop growth, plant-
ing and harvesting cycles, and crop yields, as well as water,
energy, and carbon fluxes. In order to better represent agri-
cultural sites, the model was modified by (1) implementing
the winter wheat subroutines following Lu et al. (2017) in
CLM5; (2) implementing plant-specific parameters for sugar
beet, potatoes, and winter wheat, thereby adding the two crop
functional types (CFTs) for sugar beet and potatoes to the
list of actively managed crops in CLM5; and (3) introducing
a cover-cropping subroutine that allows multiple crop types
on the same column within 1 year. The latter modification
allows the simulation of cropping during winter months be-
fore usual cash crop planting begins in spring, which is an
agricultural management technique with a long history that
is regaining popularity as it reduces erosion and improves
soil health and carbon storage and is commonly used in the
regions evaluated in this study. We compared simulation re-

sults with field data and found that both the new crop-specific
parameterization and the winter wheat subroutines led to a
significant simulation improvement in terms of energy fluxes
(root-mean-square error, RMSE, reduction for latent and sen-
sible heat by up to 57 % and 59 %, respectively), leaf area
index (LAI), net ecosystem exchange, and crop yield (up to
87 % improvement in winter wheat yield prediction) com-
pared with default model results. The cover-cropping sub-
routine yielded a substantial improvement in representation
of field conditions after harvest of the main cash crop (winter
season) in terms of LAI magnitudes, seasonal cycle of LAI,
and latent heat flux (reduction of wintertime RMSE for latent
heat flux by 42 %). Our modifications significantly improved
model simulations and should therefore be applied in future
studies with CLM5 to improve regional yield predictions and
to better understand large-scale impacts of agricultural man-
agement on carbon, water, and energy fluxes.

1 Introduction

Global climate change is widely believed to have an impor-
tant impact on future agriculture, and consequently food se-
curity under the changing climate is an important research
topic (Lobell et al., 2011; Aaheim et al., 2012; Ma et al.,
2012; Gosling, 2013; Rosenzweig et al., 2014). With a trend
of declining crop yield and increasing uncertainty in yields in
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many parts of the world (Urban et al., 2012; Challinor et al.,
2014; Deryng et al., 2014; Rosenzweig et al., 2014; Tai et al.,
2014; Levis et al., 2018), understanding the impact of climate
change on crop production and improving its prediction at
local to global scales is a research topic of great importance
to society. In addition, agricultural expansion and manage-
ment practices exert strong influences on physical and bio-
geochemical properties of terrestrial ecosystems that need to
be considered in model simulations of the terrestrial system.
Thus, the evaluation and improvement of integrated model-
ing approaches, including through incorporation of improved
crop phenology, to simulate realistic land management and
crop yield in response to climate conditions are the focus of
many studies (Stehfest et al., 2007; Olesen et al., 2011; Van
den Hoof et al., 2011; Rosenzweig et al., 2014).

Nevertheless, the sophisticated representation of agricul-
tural land cover in Earth system models (ESMs) remains an
ongoing challenge due to the complexity of agricultural man-
agement decisions and the variety of different crop types and
their respective phenologies. In many land surface models
(LSMs) and land components of ESMs, the representation
of crops is limited to simplistic schemes lacking the repre-
sentation of management (e.g., irrigation and fertilization) or
to surrogate representation by natural grassland (Betts, 2005;
Elliott et al., 2015; McDermid et al., 2017). In recent studies
there is a trend towards the incorporation of a comprehen-
sive crop module in LSMs. These modules offer improved
potential to study changes in water and energy cycles and
crop production in response to climate, environment, land
use, and land management changes. This may help to im-
prove the simulation of biogeophysical and biogeochemical
processes on regional and global scales (Kucharik and Brye,
2003; Lobell et al., 2011; Lokupitiya et al., 2009; Levis et al.,
2012; Osborne et al., 2015; McDermid et al., 2017; Lawrence
et al., 2018; Lombardozzi et al., 2020). For example, the
Simple Biosphere model (SiB) incorporated a crop module
to represent a number of temperate crop varieties, which re-
sulted in improved simulated leaf area index (LAI) and net
ecosystem exchange (NEE) (Lokupitiya et al., 2009). In ad-
dition, the Joint UK Land Environment Simulator (JULES)
was extended to a global representation of crops, which im-
proved simulated LAI and gross primary production (GPP)
(Osborne et al., 2015).

Recent versions of the Community Land Model (CLM,
i.e., 4.0, 4.5, and 5.0) have adopted the prognostic crop mod-
ule from the Agro-Ecosystem Integrated Biosphere Simula-
tor (Agro-IBIS) (Kucharik and Brye, 2003), which has the
ability to simulate the soil–vegetation–atmosphere system in-
cluding crop yields and has been evaluated in multiple stud-
ies (e.g., Twine and Kucharik, 2009; Webler et al., 2012;
Xu et al., 2016). Even the simplified version of the Agro-
IBIS crop scheme that was implemented in CLM4 led to
improved simulation of climate–crop interactions and more
comprehensive ecosystem balances than previous CLM ver-
sions (Levis et al., 2012). Evaluation studies of CLM4 by

Levis et al. (2012) and Chen et al. (2015) revealed signifi-
cant sensitivities of energy and carbon fluxes to biases in crop
phenology, especially for the seasonality of the NEE for man-
aged crop sites where the flux is governed by planting and
harvest times. In its latest version, CLM (CLM5) has been
extended with an interactive crop module that represents crop
management. It includes eight actively managed crop types
(temperate soybean, tropical soybean, temperate corn, tropi-
cal corn, spring wheat, cotton, rice, and sugarcane), as well as
irrigated and non-irrigated unmanaged crops (Lombardozzi
et al., 2020). CLM5 is the only land surface model to date
that includes time-varying spatial distributions of major crop
types and their management (Lombardozzi et al., 2020). De-
spite these improvements over earlier versions of CLM, the
few studies that evaluated CLM5 at point and regional scales
suggest inaccurate phenology and crop yield estimates for
specific crops (Chen et al., 2018; Sheng et al., 2018). In sum-
mary, current crop modules in LSMs are limited by their abil-
ity to represent many different crop types and important man-
agement practices such as cover cropping and flexible fertil-
izer application types and amounts. The main challenges are
related to the complex parameterization of simulated crop va-
rieties due to their distinct phenology in combination with
information scarcity, as well as the complexity of human in-
teraction through management decisions and biogeochemical
processes. In addition to irrigation and fertilizer application,
crop rotations and cover cropping are important management
practices, and their consideration is a crucial factor to accu-
rately represent energy fluxes and crop phenology of agricul-
tural sites (or areas) over longer timescales.

In western Europe, a large proportion of arable land is cul-
tivated with rotations of different non-perennial cash crops
(Kollas et al., 2015; Eurostat, 2018). The most important
cash crops grown in the European Union (EU) are cereals,
such as wheat (mostly winter wheat varieties in Western Eu-
rope), barley, and maize; root crops, such as sugar beet and
potatoes; and oilseed crops, such as rapeseed, turnip rape-
seed, and sunflowers (Eurostat, 2018). Cereals account for
the majority of all crop production in the EU, contribut-
ing up to 12 % to global cereal grain production (Eurostat,
2018). The EU production of sugar beet accounts for about
half of the global production (Eurostat, 2018). The use of
cover crops is a common agricultural management practice
to reduce soil erosion, soil compaction, and nitrogen leach-
ing and to increase agricultural productivity by nitrogen fix-
ation (Sainju et al., 2003; Lobell4 et al., 2006; Basche et al.,
2014; Plaza-Bonilla et al., 2015; Tiemann et al., 2015; Kaye
and Quemada, 2017). The biogeochemical effects and bene-
fits of cover crops, as well as their potential to mitigate cli-
mate change, are the focus of many studies (e.g., Sainju et al.,
2003; Lobell et al., 2006; Groff, 2015; Plaza-Bonilla et al.,
2015; Basche et al., 2016; Carrer et al., 2018; Lombardozzi
et al., 2018; Hunter et al., 2019). Despite recent development
efforts, the representation of these management practices has
not yet been included in CLM5. Furthermore, in a previous
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study by Lu et al. (2017) the default representation of win-
ter cereals performed poorly in simulating the phenology of
winter wheat.

In this study, we evaluate and enhance the performance of
the crop module of CLM5 focusing on the representation of
seasonal and inter-annual variations in crop growth, plant-
ing and harvesting cycles, crop yields, and energy and car-
bon fluxes. Firstly, we transferred the modified vernalization
and cold-tolerance routine by Lu et al. (2017) to the CLM5
code to simulate winter cereal in a more meaningful way.
Secondly, new crop-specific parameter sets for winter wheat,
sugar beet, and potatoes that were gathered from the liter-
ature and from observation data were added to the default
parameter scheme. Finally, we extended CLM5 by adding a
new crop rotation and cover-cropping subroutine that mod-
els the growth of winter cover crops and the rotation from a
summer to a winter crop within the same year. All modifica-
tions were tested at the point scale at four cropland reference
sites of the ICOS (Integrated Carbon Observation System)
and TERENO (Terrestrial Environmental Observatory) net-
works in central Europe.

2 Materials and methods

2.1 Community Land Model

Land surface models such as CLM5 are broadly applied
in scientific studies to simulate water, energy, and nutri-
ent fluxes in the terrestrial ecosystem (Niu et al., 2011;
Han et al., 2014; Lawrence et al., 2018; Naz et al., 2019).
CLM5 represents the latest version of the land component
in the Community Earth System Model (CESM) (Lawrence
et al., 2018, 2019). In CLM5, simulated land surface fluxes
such as latent and sensible heat are driven by atmospheric
and meteorological input variables in combination with
soil and vegetation states (e.g., soil moisture and LAI)
and parameters (e.g., hydraulic conductivity, land cover)
(Oleson et al., 2010; Lawrence et al., 2011; Lawrence et
al., 2018). The new biogeochemistry and crop module of
CLM5 (BGC-Crop) adopted the prognostic crop module
from the Agro-Ecosystem Integrated Biosphere Simulator
(Agro-IBIS) (Kucharik and Brye, 2003). This incorporation
of agriculturally managed land cover may help to improve
the general representation of biogeochemical processes on
the global scale to better address challenges from land use
changes and agriculture practices (e.g., Lobell et al., 2006).
The CLM5 crop module includes new crop functional types,
updated fertilization rates and irrigation triggers, a transient
crop management option, and some adjustments to pheno-
logical parameters. In addition, extensive modifications have
been made to the grain C and N pool. For example, C for
annual crop seeding comes from the grain C pool, and ini-
tial seed C for planting is increased from 1 to 3 gC m−2

(Lawrence et al., 2018, 2019; Lombardozzi et al., 2020).

Vegetated land units are separated into natural vegetation
and crop land units, with only one crop functional type (CFT)
on each soil column, including irrigation as a CFT-specific
land management technique (Lawrence et al., 2018; Lom-
bardozzi et al., 2020). A total of 78 plant and crop functional
types are included in CLM5, including an irrigated and unir-
rigated unmanaged C3 crop; 8 actively managed crop types
– spring wheat, temperate and tropical corn, temperate and
tropical soybean, cotton, rice, and sugarcane; and 23 crop
types without specific crop parameters associated with them
that are merged to the most closely related and parameter-
ized CFTs (Lombardozzi et al., 2020). For the simulation
of those inactive crop types, the specific crop parameters of
the spatially closest and most similar out of the eight active
crop types are used. Irrigation is simulated dynamically for
defined irrigated CFTs in response to soil moisture condi-
tions and is partly based on the implementation of Ozdogan
et al. (2010) (Leng et al., 2013; Lawrence et al., 2018).

Besides water availability from irrigation and precipi-
tation, crop yield and food productivity greatly depends
on fertilization. In CLM5-BGC-Crop, fertilization is repre-
sented by adding nitrogen directly to the soil mineral pool
(Lawrence et al., 2018). Fertilization dynamics and annual
fertilizer amounts depend on the crop functional types and
vary spatially and yearly based on the land use and land cover
change time series derived from the Land Use Model Inter-
comparison Project (Lawrence et al., 2019). In CLM5, land
fractions with natural vegetation are not influenced by fertil-
izer application. In cropping units, mineral fertilizer applica-
tion starts during the leaf-emergence phase of crop growth
and continues for 20 d. Manure nitrogen is applied at slower
rates (0.002 kg N m−2 yr−1 by default) to prevent rapid den-
itrification rates that were observed in earlier CLM versions
so that more uptake by the plant is achieved (Lawrence et al.,
2018).

CLM5-BGC-Crop is fully prognostic with regards to car-
bon and nitrogen in the soil, vegetation, and litter at each
time step. The crop phenology and the carbon and nitrogen
cycling processes follow three phenology phases: phase (1)
from planting to leaf emergence, phase (2) from leaf emer-
gence to beginning of grain fill, and phase (3) from beginning
of grain fill to maturity and harvest. These phenology phases
are governed by temperature thresholds and the percentage
of growing degree days (GDDs) required for maturity of the
crop, with harvest occurring when maturity is reached (Lom-
bardozzi et al., 2020).

The first phenology stage, planting, starts when crop spe-
cific 10 d mean temperature thresholds (of both the daily 2 m
air temperature T10 d and the daily minimum 2 m air tem-
perature Tmin,10 d) are met. The transition from planting to
leaf emergence (phase 2) begins when the growing degree
days of soil temperature at 0.05 m depth (GDDTsoi) reaches
1 %–5 % of the GDDs required for maturity (GDDmat), de-
pending on a crop-specific base temperature for the GDDTsoi.
Grain fill (phase 3) starts with either the simulated 2 m air
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temperature (GDDT2m) reaching a heat unit threshold (h) of
40 %–65 % of GDDmat or when the maximum leaf area in-
dex (Lmax) is reached. The crop is harvested in one time step
when 100 % GDDmat is reached or when the crop-specific
maximum number of days past planting is exceeded. The
LAI is dependent on the specified specific leaf area (SLA)
and the calculated leaf C. The SLA and the maximum LAI
are specified for each crop in the parameter file (Table A2).

The allocation of carbon and nitrogen also follows the
phenology phases. During the leaf-emergence phase, carbon
from the seed carbon pool is transferred to the leaf carbon
pool. Nitrogen is supplied through the soil mineral nitrogen
pool. During the grain-fill phases, nitrogen from the leaf and
stem of the plant is translocated to the grain pool. Alloca-
tion ends upon harvest of the crop, when grain carbon and
nitrogen are transferred from the grain pool to the grain prod-
uct pool and a small amount (3 gC m−2) is transferred to the
seed carbon pool for the next planting (Lawrence et al., 2018;
Lombardozzi et al., 2020).

The total amount of assimilated carbon and nitrogen is
regulated by availability of soil nitrogen, among other re-
sources, and also depends on crop-specific target C/N ratios
in the plant tissue (varying for roots, stem, leaves, reproduc-
tive pools) (Lawrence et al., 2018; Lombardozzi et al., 2020).
For a detailed technical description of the model and all its
features, the reader is referred to the technical documenta-
tion and description of new features in CLM5 (Lawrence et
al., 2018, 2019; Lombardozzi et al., 2020).

2.2 Model modifications

In the course of this study, three main limitations of CLM5
for the intended simulation of agricultural sites in western
Europe at point scale were identified: (1) the default CLM5-
BGC-Crop code and parameterization yielded a very poor
representation of crop growth of winter wheat and other win-
ter crops, (2) the default plant parameter data set lacks spe-
cific parameterization for several important cash crops (here
sugar beet and potatoes in particular), and (3) CLM5-BGC-
Crop does not allow a second crop growth onset or a second
CFT to be grown on the same field within 1 year. These lim-
itations were resolved by modifications to the code structure
and parameterization of the CLM5-BGC-Crop module de-
scribed below.

2.2.1 Winter cereal representation

Winter wheat is an important crop for global food production
and covers a significant fraction of the European croplands
(Chakraborty and Newton, 2011; Vermeulen et al., 2012). In
general, winter wheat is exposed to a different range of envi-
ronmental stresses compared to summer crops, such as low
temperatures. In regions with sufficiently cold winters, the
main processes that allow a successful cultivation of winter
wheat during the colder months are vernalization and cold

tolerance (Barlow et al., 2015; Chouard, 1960). Vernaliza-
tion represents the process that an exposure to a period of
nonlethal low temperatures is required to enter the flowering
stage for winter crops. In general, the vernalization process
ensures that the reproductive development of plants growing
over winter (winter crops and also natural vegetation) does
not start in late summer or fall but rather in late winter or
spring. The other process, cold tolerance, ensures that the
crop can acclimate to low temperatures and thus survive cold
temperatures and even freeze–thaw cycles. However, cold
damage to the crop can occur when the crop is exposed to low
temperatures at a certain development stage. These damages
have been documented to have significant impacts in crop
yield (Lu et al., 2017). Lu et al. (2017) introduced a new ver-
nalization, as well as a cold-tolerance and frost damage sub-
routine in CLM4.5 to better simulate the phenology of winter
cereal. For this, they adapted the winter wheat vernalization
model from Streck et al. (2003). Streck et al. (2003) evalu-
ated their vernalization algorithm for a wide range of winter
wheat cultivars for the purpose of being used in crop model
approaches. Furthermore, Lu et al. (2017) implemented a
cold-tolerance scheme that includes frost damage representa-
tion using the approaches of Bergjord et al. (2008) and Vico
et al. (2014). In this study, their modifications were ported to
the newer version of the model, CLM5, and tested for several
study sites.

Vernalization and cold tolerance are cumulative processes
that operate in certain optimum temperature ranges (which
can be different for different crop types and cultivars). The
vernalization process starts after leaf emergence and ends
before flowering (Streck et al., 2003) and is dependent on
the crown temperature (Tcrown) (see Eq. A1). The crown is
the connecting tissue between the roots and the shoots at the
base of the plant. For winter wheat, the crown node is lo-
cated at about 3–5 cm soil depth (Aase and Siddoway, 1979).
The daily vernalization dependence is calculated based on
Tcrown, and the optimum vernalization temperature (Topt) is
limited to times when the crown temperature lies within the
minimum to maximum vernalization temperature (Tmin and
Tmax) range:

vd=
∑

fvn(Tcrown) , (1)

fvn(Tcrown)=

2(Tcrown− Tmin)
α
(
Topt− Tmin

)α
− (Tcrown− Tmin)

2α

(Topt− Tmin)2α
, (2)

α =
ln2

ln[(Tmax− Tmin)/(Topt− Tmin)],
(3)

vf=
vd5

22.55
+ vd5,

(4)

where vd (–) is the sum of the sequential vernalization days;
fvn (–) is the daily vernalization rate; vf (–) is the vernal-
ization factor; Tcrown (K) is the crown temperature; and Topt

Geosci. Model Dev., 14, 573–601, 2021 https://doi.org/10.5194/gmd-14-573-2021



T. Boas et al.: Representing cropland sites in CLM5 577

(K), Tmax (K), and Tmin (K) are the optimum, maximum, and
minimum vernalization temperatures, respectively.

The vernalization factor can range between 0 (not ver-
nalized) and 1 (fully vernalized). It is multiplied with the
GDD value during the phenology phase after planting and
the grain carbon allocation coefficient, which leads to a re-
duced growth rate in the beginning of the phenology cycle
until the plant is fully vernalized. The vernalization factor
is further used in the cold-tolerance subroutine to assess the
cumulative cold hardening of the plant and the dehardening
process when exposed to higher temperatures (see below).
Lu et al. (2017) introduced a scheme to quantify the impacts
of frost damage based on the approaches following Bergjord
et al. (2008) and Vico et al. (2014). The damage from low
temperatures is quantified by three main variables: the tem-
perature at which 50 % of the plant is damaged (LT50), the
survival probability (fsurv), and winter killing degree days
(WDDs) (Bergjord et al., 2008; Lu et al., 2017; Vico et al.,
2014). A detailed description of these approaches can be
found in Bergjord et al. (2008) and Vico et al. (2014).

The temperature at which 50 % of the plant is damaged
(LT50) is calculated interactively at each time step (LT50,t )
depending on the previous time step (LT50,t−1) and on sev-
eral accumulative parameters. These parameters are the ex-
posure to near-lethal temperatures (rates), the stress due to
respiration under snow (rater), the cold hardening or low-
temperature acclimation (contribution of hardening, rateh),
and the loss of hardening due to the exposure to a period of
higher temperatures (dehardening, rated) that are each func-
tions of the crown temperature (Lu et al., 2017, and refer-
ences therein) (see Eqs. A2–A11).

The survival rate (fsurv) is then calculated as a function of
LT50 and the crown temperature. The probability of survival
is a function of Tcrown in time (t). It increases once Tcrown is
higher than LT50 and decreases when it is lower than LT50
(Vico et al., 2014):

fsurv (Tcrown, t)= 2−
Tcrown
LT50

αsurv

, (5)

where αsurv is a shape parameter of 4.
The winter killing degree day (WDD) is calculated as

a function of crown temperature and survival probability,
where the maximum function limits the integration to the po-
tentially damaging periods and when the air temperature (T )
is lower than the base temperature (Tbase) of 0 ◦C (Vico et al.,
2014):

WDD=
∫

winter

max[(Tbase− Tcrown),0]

[1− fsurv(Tcrown, t)]dt. (6)

Lower LT50 indicates a higher frost tolerance and would re-
sult in higher survival rates, smaller WDD, and less cold
damage to the plant. Thus, when the survival probability and

crown temperature are low, the WDD will be high (Vico et
al., 2014).

Lu et al. (2017) also implemented a relationship between
frost damage described above and the subsequent growth or
carbon allocation of the plant. Whenever the survival fac-
tor is less than 1, a small amount of leaf carbon (5 gC m−2

per model time step) and a small amount of leaf nitrogen
(scaled by the prescribed C/N target ratios; see Table 1 and
Table A2) are transferred to the soil carbon and nitrogen litter
pool, thus simulating a reduction in growth and/or damage of
small and young leaves and seedlings. Additionally, in order
to simulate more drastic and instantaneous damage or death
of the plant due to a longer duration of lethal temperatures
(most likely to occur in spring when the plant has emerged
and is close to or already fully vernalized), a second frost
damage function is implemented. When WDD > 1◦ d, the
frost damage function is triggered, leading to crop damage
by transferring leaf carbon (amount scaled by the survival
probability (1− fsurv)) to the soil carbon litter pool.

A more detailed description of these routines can be found
in the source literature (Lu et al., 2017, and references
therein).

2.2.2 Crop-specific parameterization

In order to yield a reasonable representation of agricultural
areas on the regional scale in future studies, the default pa-
rameter set was extended with specific crop parameters for
sugar beet, potatoes, and winter wheat based on the char-
acteristics of our study sites to better fit the observed plant
phenology and energy fluxes at the simulation sites.

The CFTs sugar beet and potatoes are merged to the spring
wheat CFT on the default parameter scheme due to the
lack of crop-specific parameters for these crops. For win-
ter wheat there is a preexisting default parameter set avail-
able in CLM5. However, this default parameterization per-
formed poorly in representing the crop phenology for the
evaluated study sites in this study. This was also reported
in an earlier study by Lu et al. (2017). Thus, crop-specific
parameters were added for sugar beet, potatoes, and winter
wheat. The parameters to be modified were selected taking
into account the sensitivity analysis and parameter estima-
tion studies by Post et al. (2017) (for version 4.5), Cheng et
al. (2020), and Fisher et al. (2019) (for version 5.0). Key pa-
rameters as identified by previous studies (Sulis et al., 2015;
Post et al., 2017; Lu et al., 2017; Fisher et al., 2019; Cheng et
al., 2020) are listed in Table 1. These parameters were added
with values from the literature or site-specific observations to
match observed values. General phenology parameters such
as the maximum canopy height, planting temperatures, max-
imum LAI, maximum and minimum planting dates, and days
for growing were adjusted according to field data, including
planting and harvest dates. A list of plant types and plant-
ing and harvest dates is provided in Table A1. C/N ratios in
leaves and roots for wheat and sugar beet were adapted from
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Table 1. CFT-specific phenology, carbon and nitrogen ratios, and allocation parameters.

Parameter CLM variable name Units

Phenology

Minimum planting date for the Northern Hemisphere min_NH_planting_date MM.DD
Maximum planting date for the Northern Hemisphere max_NH_planting_date MM.DD
Average 5 day daily temperature needed for planting planting_temp K
Average 5 d daily minimum temperature needed for planting min_planting_temp K
Minimum growing degree days gddmin ◦ d
Maximum number of days to maturity mxmat Days
Growing degree days for maturity hygdd ◦ d
Base temperature for GDD baset ◦ C
Maximum temperature for GDD mxtmp ◦ C
Percentage of GDD for maturity to enter phase 3 lfemerg % GDDmat
Percentage of GDD for maturity to enter phase 4 grnfill % GDDmat
Canopy top coefficient ztopmax M
Maximum leaf area index laimx m2 m−2

Specific leaf area slatop m2 gC−1

CN ratios and allocation

Leaf C/N leafcn gC gN−1

Minimum leaf C/N leafcn_min gC gN−1

Maximum leaf C/N leafcn_max gC gN−1

Fine root C/N frootcn gC gN−1

Grain C/N graincn gC gN−1

Fraction of leaf N in RuBisCo flnr fraction per gNm−2

Whitmore and Groot (1997), Gan et al. (2011), Sánchez-
Sastre et al. (2018), and Zheng et al. (2018). The specific
leaf area (slatop) and the fraction of leaf N in RuBisCo (flnr)
for sugar beet and winter wheat were taken from Sulis et
al. (2015) and references therein and also adopted for pota-
toes.

Table A2 provides a full list of default and newly added
crop-specific parameters for the CFTs temperate corn, spring
wheat, sugar beet, potatoes, and winter wheat.

2.2.3 Cover-cropping and crop rotation scheme

The effect of cover crops on the physical and biogeochemical
properties of the land surface alters latent heat flux, albedo,
and soil carbon and nitrogen storage and can potentially im-
pact local and regional climate (Sainju et al., 2003; Lobell
et al., 2006; Möller and Reents, 2009; Plaza-Bonilla et al.,
2015; Basche et al., 2016; Carrer et al., 2018; Lombardozzi
et al., 2018; Hunter et al., 2019).

In the default BGC phenology, the growth algorithm starts
in the beginning of each year, when the crop is not alive on
the specific patch. Furthermore, the CLM structure does not
allow multiple CFTs to coexist on the same column so that
multiple planting phases related to cover cropping over win-
ter months or crop rotations with winter and summer crops,
both being very common practices in Europe and world-
wide, cannot be accounted for. This might also be an issue

when representing ecosystems where agricultural manage-
ment practices involve multiple sowing and harvest cycles
in accordance with the monsoon season (e.g., India). There-
fore, a cover-cropping subroutine was implemented in the
BGC phenology module that affects the onset–offset (crop
cycle/fallow) algorithm to allow a second onset period (crop
cycle) on the same column.

A cover crop flag was introduced in the parameter file and
in the source code. This flag can be set for any CFT in the
parameter file and calls the cover-cropping subroutine when
it is set to true (covercrop_flag 6= 0). This allows a flexible
handling of this option and for its application on a larger
scale. With this modification, the onset period can start again
within 1 simulation year for another (or the same) CFT. For
example, when the maturity of the crop is reached and it has
been harvested, the model would by default switch to the next
stage (phase 4), where the crop is not alive and the offset
(fallow) period begins. The next onset period and GDD ac-
cumulation for planting would then start in the subsequent
simulation year. In our modified CLM5 version, the cover-
cropping subroutine is called before entering into the offset
period when the cover-crop flag for the current CFT is set
to true. In the cover-cropping subroutine, the CFT is then
changed according to a predefined rotation scheme, and an-
other onset period and GDD accumulation for planting is ini-
tialized.
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A common practice is to plow the cover crops into the soil
instead of removing their biomass from the field. We simu-
lated this by relocating the biomass of the crop into the litter
pool instead of the grain product pool upon harvest using the
use_grainproduct flag described below (Eq. 7).

Individual crop rotation schemes were customized within
the code and depend on the currently planted crop type. For
example, if a simulation starts with a crop coverage of spring
wheat specified in the surface file, the new subroutine is
called after harvest of the crop. Within the subroutine, the
CFT is then changed to the next crop, e.g., sugar beet. Af-
ter the harvest of this crop, e.g., sugar beet, the CFT is again
changed to the next crop and so on. When the CFT is changed
back to spring wheat, the rotation cycle starts again. This ro-
tation is defined in a repetitive sequence based on the har-
vested CFT and its harvest date:

if harvdate(p)≥ hd1 and ivt(p)= crop1 then

ivt(p)= crop2

croplive(p)= false
idop(p)= not_planted
use_grainproduct= true

else if harvdate(p)≥ hd2 and ivt(p)= crop2 then
ivt(p)= crop3

croplive(p)= false
idop(p)= not_planted
use_grainproduct= true, (7)

where harvdate is the harvest day of the current simulation
year, hd is the customizable harvest date of the respective
CFT, p is the simulated patch on the model grid, ivt is the
simulated CFT, crop1−3 represent the user-specified CFTs to
the rotated, idop is the planting day, and use_grainproduct is
a flag to define whether the grain carbon of simulated crop is
to be harvested into the food pool or not. If this flag is set to
false, the plant carbon and nitrogen are transferred to the soil
litter pool and not allocated to the food product pool upon
harvest of the crop.

The actual rotation of crop types can be customized by the
user by defining the variables hd and cropx in a list (e.g.,
hd1 = 150 [day of year], crop1 = spring wheat). By includ-
ing the harvest date as a dependency, it is also possible to
simulate the planting of cover crops based on harvest date
thresholds. A user-defined maximum harvest date for any
specific cash crop can define whether a cover crop would be
planted or not. This technique can be beneficial to study the
effects of conceptual cover-cropping scenarios on regional
scales. The possibility to change the CFT within the same
year represents a significant improvement in flexibility, as
CLM5 only permitted land use changes at the beginning of
every year. In order to simulate cover cropping at our study
site DE-RuS, we implemented a new CFT for a greening mix
cover crop (or covercrop1).

Figure 1. ICOS and TERENO cropland study sites Selhausen
(DE-RuS), Merzenhausen (DE-RuM), Klingenberg (DE-Kli), and
Lonzée (BE-Lon).

2.3 Study sites and validation data

The CLM5 model was set up for four European cropland
sites: Selhausen, Merzenhausen, Klingenberg, and Lonzée
(Fig. 1). These sites were selected mainly for their excellent
continuous measurements of surface energy fluxes.

Selhausen (50.86589◦ N, 6.44712◦ E) is part of the
TERENO Rur Hydrological Observatory (Bogena at al.,
2018) and the Integrated Carbon Observation System (ICOS,
2020). The test site covers an area of approximately
1 km× 1 km and is located in the catchment of the Rur river
(Bogena et al., 2018). Selhausen had a crop rotation of sugar
beet (Beta vulgaris), winter wheat (Triticum aestivum), and
winter barley (Hordeum vulgare) and also less frequently
featured rapeseed (Brassica napus) and potatoes (Solanum
tuberosum) from 2015 to 2019. Cover crops such as oilseed
radish or cover crop mixes are planted occasionally between
two main crop rotations. Continuous records of meteorolog-
ical variables, soil-specific observations, and greenhouse gas
and energy fluxes have been available for Selhausen since
2011. Regular LAI measurements have been available since
2016 (Ney and Graf, 2018).

Merzenhausen (50.93033◦ N, 6.29747◦ E) is located at ap-
proximately 14 km from Selhausen and is also part of the
TERENO Rur Hydrological Observatory. The crop rotation
of the site includes sugar beet (Beta vulgaris), winter wheat
(Triticum aestivum), winter barley (Hordeum vulgare), rape-
seed (Brassica napus), and occasionally catch cover crop
mixes. For Merzenhausen, continuous records of meteo-
rological variables, soil-specific observations, and energy
fluxes have been available since 2011. Regular LAI measure-
ments were available from 2016 to 2018.
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Klingenberg (50.89306◦ N, 13.52238◦ E) is an ICOS crop-
land site located in the mountain foreland of the Erzgebirge
that is operated by the Technical University Dresden (TU
Dresden) (ICOS, 2020; Prescher et al., 2010). The site is
characterized as managed cropland with a 5-year planting ro-
tation of rapeseed (Brassica napus), winter wheat (Triticum
aestivum), maize (Zea mays), and spring and winter barley
(Hordeum vulgare) (Kutsch et al., 2010). Since 2004, data
on ecosystem fluxes (including net ecosystem and net biome
productivity), meteorological variables, and soil observations
have been collected. Furthermore, biomass observations and
agricultural management information are available for this
site.

The cropland site Lonzée (50.553◦ N, 4.746◦ E) in Bel-
gium is also part of ICOS (Buysse et al., 2017). It has
been planted in a 4-year rotation cycle with sugar beet
(Beta vulgaris), winter wheat (Triticum aestivum), and potato
(Solanum tuberosum) since 2000, with mustard as a cover
crop after winter wheat harvest (Moureaux, 2006; Moureaux
et al., 2008). For Lonzée, continuous records of meteorolog-
ical variables, EC flux data, and LAI (GLAI and GAI) mea-
surements are available from 2004 onwards. General infor-
mation on the ICOS study sites, such as climatic conditions
and soil types, is provided on the ICOS Carbon Portal under
the respective site codes (ICOS, 2020).

At all sites, the application of mineral fertilizer and herbi-
cides or pesticides, as well as occasional application of or-
ganic fertilizer, is regular management practice.

Station data required to force CLM, i.e., meteorological
variables (see the following section), were measured as block
averages over 10 min or at higher resolutions and gap-filled
using linear statistical relations to nearby stations where
possible (Graf, 2017) or by marginal distribution sampling
within the software package REddyProc otherwise (Wutzler
et al., 2018). Fluxes required for model validation (i.e., net
ecosystem CO2 exchange (NEE), latent heat flux (LE), sen-
sible heat flux (H ), soil heat flux (G), and gross primary pro-
duction (GPP)) and net radiation (Rn) were either measured
(G and Rn) or computed from turbulent raw measurements
(frequency ≥ 10 s−1) using the eddy covariance method for
30 min block averages by the respective site operators. Sub-
sequently, gaps were filled and GPP was estimated from NEE
using REddyProc (Wutzler et al., 2018). More details on
quality control, filling of longer gaps and by nearby stations,
correction of soil heat flux, and energy balance closure anal-
ysis are given in Graf et al. (2020), and these data sets are
specifically given for DE-RuS and DE-RuM, including LAI
measurements, in Reichenau et al. (2020).The long-term an-
nual energy balance closures of the sites DE-RuS, DE-Kli,
and BE-Lon were approximately 79 %, 77 %, and 76 %, re-
spectively, according to analyses in Graf et al. (2020), and
76 % at DE-RuM according to an earlier study by Eder et
al. (2015). All half-hourly meteorological and flux data were
aggregated to hourly averages to match our customized CLM
forcing time step.

Site-specific measurement records of latent and sensible
heat fluxes, net ecosystem exchange (NEE), LAI, soil tem-
perature, and soil moisture were used as validation data for
the simulation runs.

Forcing variables were always used in gap-filled form,
while validation variables were used in unfilled, quality-
filtered form.

3 Experimental design and analyses

3.1 Model implementation

For the single-point study sites, CLM was run in point mode
with only one grid cell and forced with site-specific hourly
meteorological data. The annual fertilization amounts at the
single-point study sites were adjusted according to docu-
mented amounts of applied fertilizer that ranged between
12 and 20 gN m−2. In CLM5, the potential photosynthetic
capacity and the total amount of assimilated carbon during
the phenology stages are regulated by the availability of soil
nitrogen (Lawrence et al., 2018). With modern fertilization
practices in Europe, nitrogen is not assumed to be a limiting
factor for the studied sites.

In order to balance ecosystem carbon and nitrogen pools,
gross primary production and total water storage in the sys-
tem, a spin-up is required (Lawrence et al., 2018). An ac-
celerated decomposition spin-up of 600 years and an addi-
tional spin-up of 400 years was conducted for each site with
the BGC-Crop module (Lawrence et al., 2018; Thornton and
Rosenbloom, 2005). The simulated conditions at the end of
the spin-up were then used as initial conditions for the fol-
lowing simulations.

In order to test the winter wheat representation, several
simulations were conducted for all winter wheat years at the
sites DE-RuS, DE-RuM, DE-Kli, and BE-Lon. In a first step,
the impact of each modification was assessed individually
by simulating one winter wheat year at the site DE-RuS us-
ing four different model configurations: (1) the default model
and default parameter set (control), (2) the default model
with the new parameter set (control + crop-specific), (3)
the extended winter wheat model with the default param-
eter set (new routine), and (4) the extended winter wheat
model with the new parameter set (new routine + crop-
specific). Further evaluations for the other study sites and
years were conducted for the combined winter wheat modifi-
cations CLM_WW (extended model with winter wheat sub-
routines and new crop-specific parameterization) in compar-
ison to control simulations (default model configuration and
default parameterization of winter wheat).

For the evaluation of the crop-specific parameter sets for
sugar beet and potatoes, simulations were run with the new
parameterizations at the sites DE-RuS and BE-Lon over sev-
eral years. For both sites, control simulations were conducted
without the new parameter set, in which both CFTs sugar
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beet and potatoes are simulated as a spring wheat by default.
Furthermore, an evaluation of the default parameterization
for the CFT temperate corn at the site DE-Kli is included in
the Supplement (Fig. S1, Table S1).

The cover-cropping and crop rotation scheme was tested
for two practical cases at DE-RuS. From 2016 to 2017,
planting was altered at DE-RuS from barley (here repre-
sented by the CFT for spring wheat) in 2016 to sugar beet
in 2017 with a greening mix cover crop in between (win-
ter months 2016/2017). In order to simulate this common
cover-cropping practice, we implemented a new CFT for a
greening mix cover crop (or covercrop1). For the years 2017
to 2019 at DE-RuS, the subroutine’s ability to simulate re-
alistic crop rotation cycles was tested by changing the sim-
ulated CFT from sugar beet (2017) to winter wheat (2017–
2018) and then to potatoes (2019). In this step, simulations
were run with the previously tested crop-specific parameter-
izations for sugar beet, potatoes, and winter wheat. Simula-
tion results were again compared to a control simulation run,
where a consecutive growth of spring wheat is simulated.

3.2 Evaluation of model performance

For statistical evaluation of the model results, the root-mean-
square error (RMSE), the bias (BIAS), and the Pearson cor-
relation (r) were chosen as performance metrics:

RMSE=

√√√√1
n

n∑
i=1
(Xi −Xobs,i)

2, (8)

BIAS=
n∑
i=1
(Xi −Xobs,i)

/ n∑
i=1
(Xobs,i), (9)

r =

(
1
n

n∑
i=1

(
Xobs,i −µobs) · (Xi −µsim

))
/(σsim · σobs), (10)

where i is time step and n the total number of time steps. Xi
and Xobs,i are the simulated and the observed values at ev-
ery time step, with µsim and µobs being the respective mean
values. The standard deviation of simulation results and mea-
surement data are represented by σsim and σobs, respectively.

The statistical evaluation was conducted for daily simula-
tion output and daily observation data for the variables NEE,
LE, H , and Rn.

4 Results

4.1 Winter cereal representation

The impact of the new winter-wheat-specific parameteriza-
tion and the new winter wheat routine, as well as the com-
bination of both, is illustrated in Fig. 2. Here we show sim-
ulated LAI for the default model and default parameter set

(control), the default model with the new parameter set (con-
trol + crop-specific), the extended winter wheat model with
the default parameter set (new routines), and the extended
winter wheat model with the new parameter set (new rou-
tines + crop specific).

Using only the new crop-specific parameter set with the
default model configuration resulted in slightly higher LAI
values compared to the control run but did not reach the ob-
served maximum LAI values and the growth cycle duration.
The implementation of the winter wheat subroutines using
the default parameter set led to a more realistic reproduction
of the growth cycle duration compared to the control run but
did not yield good correspondence with observed LAI mag-
nitudes. The combination of the new crop-specific parameter
set and the new winter wheat subroutines resulted in the most
realistic LAI dynamics (Fig. 2). As previously described by
Lu et al. (2017), the default vernalization routine reaches a
factor of 1 (fully vernalized) shortly after planting when the
first frost occurs. This induced an unrealistically early com-
mencement of the grain-fill stage within 2 months after plant-
ing in the control run (November or December). The default
vernalization also resulted in peak LAI occurring too early in
the year, leading to significantly lower photosynthesis com-
pared to the observations. This also applies to the implemen-
tation of the new crop-specific parameter set, which generally
leads to slightly higher LAI values.

In the extended winter wheat model, the adapted vernal-
ization routine produces lower initial vernalization factors,
which reduce the growing degree days. This leads to later
onset of the leaf-emergence and grain-fill stage and allows
a more realistic representation of the LAI cycle and peak in
combination with the new crop-specific parameterization.

In further evaluations, the combined winter wheat pack-
age, including the new crop-specific parameterization and
the extended winter wheat subroutines, is implemented
in CLM_WW simulations and compared to control runs
(Fig. 3). For all study sites and simulation years, CLM_WW
simulations resulted in a much better representation of the
growth cycle and corresponding seasonal LAI variation and
magnitudes compared to control simulations (Fig. 3). In ad-
dition, the temporal pattern of energy fluxes and NEE were
improved with CLM_WW compared to the control run.

In general, CLM_WW yielded LAI peak magnitudes sim-
ilar to observations at the sites BE-Lon, DE-RuS, and DE-
RuM (Fig. 3). For DE-Kli, site-specific observations of the
LAI were not available, but simulated LAI magnitudes for
DE-Kli using CLM_WW are similar to those for BE-Lon.
For the BE-Lon site, CLM_WW-simulated peak LAI magni-
tudes are close to the observations. An exception is the year
2015, where CLM_WW underestimated the unusually high
LAI values observed in May and June, which ranged from
5.40 to 6.38 m2 m−2. For BE-Lon, faster growth was simu-
lated in the early growing stage of winter wheat, resulting in
a more gradual increase in LAI compared to the other sites
(Fig. 3). This is related to higher air temperatures at BE-Lon
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Figure 2. Daily simulation results for the LAI, simulated with default model and the default parameter set (control), the default model with
new parameter set (control+ crop-specific), the extended winter wheat model with default parameterization (new routines), and the extended
model with the new parameter set (new routines + crop-specific), compared to point observations for a winter wheat year at DE-RuS.

early in the growing stage (especially in February) that en-
abled more simulated growth compared to the other sites.

Overall, the LAI peak simulated with CLM_WW occurred
about 1 month earlier than observed, suggesting that mat-
uration was reached too early. This is also reflected in the
simulated CLM_WW harvest dates that are approximately
1 month earlier than the recorded dates (Table 3). While
the planting date is the same for the control run and the
CLM_WW simulations, CLM_WW generally resulted in a
better match of simulated and recorded harvest dates (1.5 to
2 months later than control run).

The correlation of simulated grain yield and site records
was significantly improved by up to 87 % in CLM_WW sim-
ulations compared to the control run. At the DE-RuS site,
CLM_WW resulted in a grain yield of 9.15 t ha−1 that is very
close to the observed value of 9.2 t ha−1, while grain yield
is strongly underestimated in the control run (1.17 t ha−1).
For DE-Kli, the CLM_WW-simulated crop yield matched
the recorded yield data very well for the year 2016 and was
overestimated for 2011 by approximately 16 %. The control
run resulted in an underestimation of yield by more than 80 %
(Fig. 4, Table 3). For BE-Lon the simulated crop yield is un-
derestimated compared to site harvest records (Fig. 4, Ta-
ble 3). While CLM_D simulations underestimated the grain
yield by approximately 85 %–90 %, CLM_WW underesti-
mated yield by only 18 %–36 % at BE-Lon. The simulated
yields by CLM_WW for the individual years show only min-
imal variations with values from 8.12 to 8.16 t ha−1, while
the measured yields ranged from 9.92 to 12.88 t ha−1, indi-
cating that CLM did not capture the inter-annual yield varia-
tion very well (Table 3).

Overall, the better representation of the winter wheat
growing cycle by CLM_WW can also be inferred from the
simulated surface energy fluxes (Fig. 3). In terms of net ra-
diation, both CLM_WW and the control run are very close
to the observations (Table 4). However, CLM_WW was able
to better capture seasonal variations of surface energy fluxes
during the growing cycle of the crop (Fig. 3). The correla-

tion coefficients for the energy fluxes (LE, H and Rn) calcu-
lated over the period from planting to harvest date for daily
simulation results and daily observation data improved for
all sites (Table 4). The highest correlations were reached for
the sites DE-Kli with r values of 0.62 and 0.71 and for BE-
Lon with r values of 0.5 and 0.46 for sensible heat and latent
heat flux, respectively (Table 4). Due to the simulated LAI
peak being too early, latent heat flux is underestimated by
CLM_WW (Fig. 3, Table 4). The high latent heat fluxes mea-
sured at BE-Lon and DE-Kli in the later months of the year
(from day 220 onwards) reflect the growth of a cover crop.
At both the BE-Lon site and at the DE-Kli site, cover crops
are typically sown after harvest of winter wheat (mustard at
BE-Lon, radish and brassica at DE-Kli), and they strongly
affect surface energy fluxes later in the year. In contrast, in
the control simulations and CLM_WW, the crop fields were
simulated as fallow after the harvest of winter wheat (Fig. 3,
Table A1). While the correlation of the latent and sensible
heat flux during the growing cycle of the crop is generally
increased with the CLM_WW model, the overall annual cor-
relation is still relatively poor due to the influence of cover
cropping and poor representation of post-harvest field condi-
tions (annual performance metrics are included in the Sup-
plement, Table S3). Furthermore, CLM_WW was generally
better able to match NEE observations compared to control
runs, partly due to the better representation of the seasonal
LAI variations (Fig. 3). During the growing season of win-
ter wheat, the negative peak in NEE coincides with the peak
in LAI. Negative NEE values indicate a carbon sink and hap-
pen when the crop gains more carbon through photosynthesis
than is lost through respiration. Correlation improved (com-
paring CLM_WW to the control run) from 0.13 to 0.46 for
BE-Lon, from 0.21 to 0.33 for DE-RuS and from 0.29 to 0.56
for DE-Kli. The resulting correlation for CLM_WW simula-
tions is still relatively low due to an underestimation of the
cumulative monthly NEE during seasons with high NEE at
BE-Lon and DE-RuS. For DE-Kli, CLM_WW was able to
match NEE observed at peak LAI very well, but late sea-
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Figure 3. Simulation results of (a–d) LAI, and simulation results averaged for each month of (e–h) NEE, (i–l) LE, and (m–p)H for all winter
wheat years (see Table 3) at the sites (from left to right) BE-Lon, DE-RuS, DE-RuM, and DE-Kli. Simulation results from the new routine
with crop-specific parameterization (CLM_WW; blue) are compared to control simulations (orange) and available site observations (grey) of
LAI (all available point observations plotted) and fluxes (averaged over all respective years and for each month, respectively). Corresponding
performance statistics for daily simulation results during the crop growth cycle are listed in Table 4.

sonal NEE (July) shortly before harvest is overestimated by
CLM_WW, resulting in a low overall agreement with ob-
servation data. Furthermore, post-harvest field observations
at BE-Lon, DE-RuS, and DE-Kli indicate that heterotrophic
respiration from soil organic matter and litter results in a car-
bon source that is not simulated well in CLM (no GPP, near-
zero NEE) (Fig. 3). This poor representation of post-harvest
field conditions is reflected in low correlations over the whole
year (Table S3).

4.2 Crop-specific parameterization of sugar beet and
potatoes

The crop-specific parameter sets were tested for several years
with sugar beet and potato planting at BE-Lon and DE-RuS,
respectively. The performance in reproducing seasonal vari-
ations and magnitudes of energy fluxes was strongly im-
proved with the crop-specific parameterization. Correspond-
ingly, simulations with the crop-specific parameter sets for
both sugar beet and potatoes were able to reasonably capture
seasonal variations and peak values of LAI and growth cycle
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Figure 4. Annual grain yield (tDM ha−1) simulated with the con-
trol run (orange) and the extended winter wheat model with crop-
specific parameterization (blue), compared to recorded harvest
yields (grey) for all simulated winter wheat years (indicated on the
x axis) at the sites BE-Lon, DE-RuS, DE-RuM, and DE-Kli.

length and harvest time (Figs. 5, 6). The control run in CLM
uses the spring wheat parameterization for these crop types
and therefore reproduced the growth cycle and seasonal LAI
of spring wheat, while simulations using the crop-specific
potato and sugar beet parameterizations better captured har-
vest date and growth cycle of these crops.

The improved growth cycle representation with crop-
specific parameters also led to more accurate simulation of
energy fluxes. For sugar beet at BE-Lon, the latent heat flux
at peak LAI corresponds well with observed values while be-
ing underestimated before and after peak LAI, and hence the
sensible heat flux is overestimated at these times (Fig. 5).
Seasonal variations of energy fluxes and magnitudes were
also captured much better in simulations with the new pa-
rameterization. The simulations with crop-specific parame-
ters show slightly better net radiation correlations for both the
sugar beet and potato CFTs at each site, compared to the con-
trol run (Table 5). The correlation between simulated and ob-
served latent heat flux for sugar beet was strongly improved
by changing the parameters (0.11 to 0.55 for DE-RuS and
0.21 to 0.55 for BE-Lon). The same is true for the simulated
sensible heat flux for sugar beet (0.04 to 0.76 for DE-RuS and
0.08 to 0.51 for BE-Lon). The NEE for the sugar beet CFT is
underestimated during peak LAI periods in the control run,
resulting in poorer correlations compared to latent and sensi-
ble heat flux and net radiation (Fig. 5). Simulations with the
crop-specific parameter set resulted in a reduction in negative
bias for NEE and reached higher correlation compared to the
control simulation (0.03 to 0.37 for DE-RuS and 0.05 to 0.64
for BE-Lon).

Similar improvements can be observed for the new potato
parameterization, while the correlation of simulation results
with observation data is generally lower compared to the
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Figure 5. Simulation results of (a–b) LAI, and monthly averaged simulation results of (c–d) NEE, (e–f) LE, (g–h) H , (i–j) G, and (k–l) Rn
for all sugar beet years (see Table 5) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results for the control run (orange) and the
crop-specific parameter set (blue) are compared to available site observations (grey) of LAI (all available point observations plotted) and
fluxes (averaged over all respective years). Corresponding performance statistics for daily simulation results are listed in Table 5.
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Figure 6. Simulation results of (a–b) LAI and monthly averaged simulation results of (c–d) NEE, (e–f) LE, (g–h) H , (i–j) G, and (k–l) Rn
for all potato years (see Table 5) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results for the control run (orange) and the
crop-specific parameter set (blue) are compared to available site observations (grey) of LAI (all available observations plotted) and fluxes
(averaged over all respective years). Corresponding performance statistics for daily simulation results are listed in Table 5.
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Table 3. Simulated annual planting and harvest dates and grain yield (tDM ha−1) by CLM_WW and CLM_D simulations (calculated using
the peak daily grain carbon throughout the growth cycle) compared to recorded harvest dates and grain yield (Obs) for all simulated winter
wheat years at the sites BE-Lon, DE-RuS, DE-RuM, and DE-Kli. For CLM simulation results, grain yield is calculated from grain carbon,
which is assumed to be 45 % of the total dry weight.

Year Source Planting date Harvest date Grain yield
(DD.MM.YYYY) (DD.MM.YYYY) [tDM ha−1]

BE-Lon

2010/2011 CLM_D 11.09.2010 10.05.2011 1.71
CLM_WW 11.09.2010 05.07.2011 8.14
Obs 14.10.2010 16.08.2011 10.64∗

2012/2013 CLM_D 12.09.2012 19.04.2013 1.68
CLM_WW 12.09.2012 25.06.2013 8.16
Obs 25.10.2012 12.08.2013 12.88

2014/2015 CLM_D 09.09.2014 20.04.2015 1.71
CLM_WW 09.09.2014 01.07.2015 8.15
Obs 15.10.2014 02.08.2015 11.13

2016/2017 CLM_D 11.09.2016 02.05.2017 1.68
CLM_WW 11.09.2016 24.07.2017 8.12
Obs 29.10.2016 30.07.2017 9.92

DE-RuS

2017/2018 CLM_D 29.09.2017 17.05.2018 1.17
CLM_WW 29.09.2017 27.06.2018 9.15
Obs 25.10.2017 16.07.2018 9.2

DE-RuM

2016/2017 CLM_D 27.09.2016 15.05.2017 1.45
CLM_WW 27.09.2016 30.06.2017 9.65
Obs 17.10.2016 22.07.2017 −

DE-Kli

2010/2011 CLM_D 15.09.2009 23.07.2011 1.19
CLM_WW 15.09.2009 11.08.2011 7.53
Obs 02.10.2010 22.08.2011 6.12

2015/2016 CLM_D 17.09.2015 24.07.2016 1.17
CLM_WW 17.09.2015 28.07.2016 7.44
Obs 18.09.2015 24.08.2016 7.48

∗ Grain yield estimated from 18.09 t ha−1 total biomass (stem and ear) yield according to stem and ear (grain)
biomass yield ratios measured for other winter wheat years at the same site.

sugar beet CFT (Fig. 6, Table 5). Seasonal LAI variations,
growing cycle length, and corresponding energy flux vari-
ations are improved in simulations with the new parameter
set. Both the latent and the sensible heat flux are strongly im-
proved at DE-RuS with correlation coefficients of 0.54 and
0.45 for CLM_WW simulations, respectively. For BE-Lon,
the improvement in correlation is slightly lower for both la-
tent and sensible heat flux compared to DE-RuS. The sea-
sonal variation of the NEE at BE-Lon is reasonably captured,
while monthly sums are overestimated with both parameter-
izations. Simulations of the NEE using the crop-specific pa-
rameter set yielded a slightly better correlation of 0.58 com-
pared to the control simulation that resulted in a correlation
of 0.43 (Table 5).

4.3 Cover-cropping and crop rotation schemes

The cover-cropping scheme was tested for two fields of ap-
plication: (1) simulation of a cover crop as a second crop
growth onset within a single year and (2) a more flexible
crop rotation between different cash crops. In this step, sim-
ulations were run with the previously tested crop-specific pa-
rameterizations for sugar beet, potatoes, and winter wheat,
and results were again compared to a control simulation run,
where a consecutive growth of spring wheat is simulated.

To test the first application of the cover-cropping and crop
rotation schemes, we simulated the cash crop and cover crop
rotation cycle at DE-RuS from 2016 to 2017 (Fig. 7). A
greening mix was planted as a cover crop in between the cash
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Table 4. Bias, root-mean-square error (RMSE), and Pearson correlation coefficient (r) for the control run and CLM_WW-simulated daily
NEE (µmol CO2 W m−2 s−1), LE (W m−2), H (W m−2), and Rn (W m−2) at the sites BE-Lon, DE-RuS, DE-RuM, and DE-Kli. Values
were calculated over the time period between recorded planting and harvest dates (averaged over all winter wheat years at each site) using
simulation output and observation data at a daily time step.

CFT Winter wheat

Site BE-Lon DE-RuS DE-RuM DE-Kli

Year(s) 2010/2011 2017/2018 2016/2017 2010/2011
2012/2013 2015/2016
2014/2015
2016/2017

Model control CLM_WW control CLM_WW control CLM_WW control CLM_WW

NEE

Bias −0.87 −0.37 −1.01 −0.61 – – −0.56 0.50
RMSE 6.34 4.96 7.73 7.58 – – 3.80 3.27
r −0.13 0.46 0.21 0.33 – – 0.29 0.56

LE

Bias −0.72 −0.13 −0.47 −0.23 −0.55 −0.09 −0.47 −0.77
RMSE 61.96 50.73 52.47 52.65 67.17 48.67 44.64 56.75
r 0.35 0.46 0.21 0.24 0.50 0.67 0.61 0.71

H

Bias 5.56 1.35 4.24 1.70 −8.49 −2.74 4.99 3.10
RMSE 45.97 27.63 40.93 39.94 47.26 32.81 49.30 35.08
r 0.42 0.50 0.45 0.48 0.21 0.36 0.47 0.63

Rn

Bias −0.18 −0.05 −0.17 −0.13 −0.09 0.08 −0.03 −0.09
RMSE 36.11 38.01 47.28 45.15 37.34 46.43 45.17 44.49
r 0.80 0.81 0.68 0.69 0.78 0.97 0.71 0.73

crop rotation of barley (simulated using the spring wheat
CFT) in 2016 and sugar beet in 2017. While only a con-
secutive growth cycle of spring wheat is simulated in the
control run, the new routine was able to represent the crop
rotation from barley to sugar beet in the following year as
well as a cover crop in between the cash crop cycles. Both
the simulation of a cover crop and the rotation of cash crops
strongly improved the representation of LAI in simulations
with the new routine over multiple years, especially during
winter months (Figs. 7, 8). While in control simulations the
model assumed bare field conditions with no plant growth
(LAI of 0) and very low latent heat flux, the new routine sim-
ulated the planting of a cover crop in fall of 2016, which leads
to an increase in latent heat flux related to increased transpi-
ration. Statistical evaluation of the simulated latent heat flux
for the time window after harvest of the first cash crop from
August 2016 to April 2017 shows that with the new routine
the negative bias was reduced from 0.74 to 0.13 compared
to control simulation results, resulting in an RMSE reduction
by approximately 42 % (Fig. 7).

For the second case (DE-RuS), which represents a higher
flexibility towards cash crop rotation, we simulated the years
of 2017 to 2019. Here, the crop rotation switched from sugar
beet in 2017 to winter wheat in 2017/2018 and potatoes in
2019 (Fig. 8). In the control simulation, using the default
CLM5 phenology algorithm, a consecutive cycle of spring
wheat is simulated. The new routine was able to represent the
rotation between different cash crops on the same field. This
resulted in a much better correspondence of simulated LAI
cycle and magnitudes with observations compared to control
simulations. Statistical analysis of the latent heat flux showed
an improvement of the RMSE (calculated for daily simula-
tion output and observation data over these three years) from
43.74 to 32.94 and the correlation coefficient from 0.40 to
0.63 with the new routine. The improvement in simulated en-
ergy fluxes for each CFT individually is in accordance with
the results presented in the previous chapters (Sect. 4.1 and
4.2).
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Table 5. Bias, root-mean-square error (RMSE), and Pearson correlation coefficient (r) for the simulated daily NEE (µmol CO2 W m−2 s−1),
LE (W m−2), H (W m−2), and Rn (W m−2) using the crop-specific parameterization (specific) for the CFTs sugar beet and potatoes at the
sites BE-Lon and DE-RuS, respectively. Results are compared to those from the control simulation runs (control). Values were calculated
over the time period between recorded planting and harvest dates (averaged over all respective CFT years at each site) using simulation
output and observation data at daily time step.

CFT Sugar beet Potatoes

Site DE-RuS BE-Lon DE-RuS BE-Lon

Year(s) 2017 2008 2016 2019 2010 2014 2018

Parameter set control specific control specific control specific control specific

NEE

Bias −0.59 −0.75 0.05 −0.05 – – 19.73 19.56
RMSE 9.1 5.94 6.19 3.75 – – 5.24 5.21
r −0.03 0.37 0.05 0.64 – – 0.43 0.58

LE

Bias −0.32 0.01 −0.37 −0.35 −0.28 0.25 0.26 0.09
RMSE 58.44 24.47 60.09 48.31 60.94 50.58 43.41 40.05
r 0.11 0.55 0.21 0.55 0.01 0.54 0.5 0.53

H

Bias 1.65 0.45 1.73 1.61 1.01 −0.38 0.5 0.22
RMSE 42.77 17.24 39.75 33.45 51.61 29.9 34.06 31.17
r −0.04 0.76 −0.08 0.51 −0.1 0.45 0.18 0.31

Rn

Bias −0.02 0.04 −0.11 −0.11 −0.04 0.04 – –
RMSE 19.74 15 37.47 35.87 48.39 49.88 – –
r 0.5 0.51 −0.22 −0.22 0.56 0.57 – –

5 Discussion

All three modifications that were implemented in this study
helped to improve the representation of cropland sites in
CLM5. Similar to the findings of Lu et al. (2017) for
CLM4.5, the implementation of their winter wheat routine
resulted in a significant improvement in representing the sea-
sonal LAI variations and surface energy fluxes during win-
ter wheat growth. Next to maize and rice, wheat is one
of the most important international food crops and among
the most important cash crops in Germany (22.8 Mt winter
wheat yield in 2019 nationwide; Statista, 2020). In Germany
and other western European countries, winter cereal varieties
(e.g., winter rye, barley, and wheat) are more abundant than
summer cereals due to climatic conditions (Palosuo et al.,
2011; Semenov and Shewry, 2011; Thaler et al., 2012). With
an average annual winter wheat yield of around 20 Mt a−1 for
Germany, an improvement of 87 % in simulated yield with
CLM_WW compared to the default model (as observed at
the DE-RuS site in 2018) could result in a difference of sev-
eral tens of millions of metric tons in total predicted annual
yield on a nationwide scale.

Despite the general improvement of winter wheat growth
and yield simulated with the modified CLM_WW, there is
still potential for further increasing the flexibility towards
simulating different crop varieties and management prac-
tices. Due to the phenology algorithm of CLM5, a low simu-
lated LAI can indicate a lower grain yield due to low biomass
growth. Accordingly, the higher simulated LAI for the DE-
RuS site was associated with a slightly higher simulated
grain yield for DE-RuS compared to BE-Lon. However, this
relationship is not reflected in the observations, as the mea-
sured grain yield is lower for DE-RuS compared to BE-Lon,
although the observed LAI is higher for DE-RuS (Fig. 3, Ta-
ble 3).

In CLM, there are several variables that influence the sim-
ulated crop yield, such as LAI cycle and peak, length of the
leaf-emergence phase, harvest date, and water availability
from the soil. Except for soil moisture, these variables are
strongly correlated to the GDD scheme, which suggests that
the simulated crop yield profoundly depends on the GDD.
The high sensitivity of simulated yield in CLM towards GDD
is not reflected in actual field observation, where crop yield
depends on a multitude of factors, environmental conditions
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Figure 7. (a) Simulated LAI for cover cropping at DE-RuS with barley (2016), a greening mix cover crop (2016/2017), and sugar beet
(2017) using the new cover-cropping subroutine (blue) in comparison to control simulation results with the default phenology algorithm of
CLM5 (orange). (b) Corresponding monthly averaged simulation results for the latent heat flux with respective bias, RMSE, and r for the
time window are shown between the dashed red lines (calculated using simulation output and observation data at daily time step). Available
observation data are plotted in grey.

Figure 8. (a) Simulated LAI for crop rotation from sugar beet (2017), winter wheat (2017/2018), and potatoes (2019) at DE-RuS using the
new cover-cropping subroutine (blue) in comparison to control simulation results with the default phenology algorithm of CLM5 (orange).
(b) Corresponding monthly averaged simulation results for the latent heat flux with respective bias, RMSE, and r over the whole time interval
(calculated using simulation output and observation data at daily time step). Available observation data are plotted in grey.
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(weather, nutrient availability, atmospheric CO2), and man-
agement decisions. Underestimation of winter wheat yield
at BE-Lon may be due to model deficiencies in represent-
ing the complex crop management practices, such as timing
and type of fertilizer, plowing-crop varieties, and the usage
of different winter wheat varieties that can show different re-
sponses to water or heat stress and frost and that have differ-
ent grain productivities (White and Wilson, 2006; Bergkamp
et al., 2018; Ceglar et al., 2019). In order to include different
varieties of any crop, the list of CFTs could be extended with
suitable plant parameterizations. However, this information
is not readily available, due to a combination of measure-
ment data scarcity and the complexity of the phenology al-
gorithm and parameter scheme. The introduction of a phenol-
ogy scheme based on plant physiological trait information in
CLM could be a major improvement in this field (see Fisher
et al., 2019) as plant trait information becomes more readily
available (e.g., the TRY Plant Trait Database, Kattge et al.,
2011). Whether considering different varieties and cultivars
of a crop is important for regional- or global-scale simula-
tions remains to be evaluated. In general, as already noted
by Lu et al. (2017), a more process-based vernalization and
cold-tolerance routine would be useful to make this subrou-
tine more applicable to other winter crops like rapeseed.

The early leaf onset and harvest for winter wheat sim-
ulated by CLM (both with the new routine and parameter
set and the control run) could be met by adjusting the mini-
mum date for planting within the CFT parameterization. This
could be useful to easily improve the crop cycle representa-
tion in regional simulations, where planting patterns are sim-
ilar for larger agricultural areas. However it would restrict the
flexibility of the model for prognostically simulating planting
dates.

In general, the simulated plant growth and resulting yield
were highly sensitive to plant parameters that govern the
growing degree calculation, which in turn influence the phe-
nological development and allocation of C and N. With only
a limited number of CFTs in CLM, a discretization of plant
parameters or varieties on a regional scale is not possible
at this point. A potential solution, without introducing ad-
ditional CFTs, could be to account for key parameters for
each CFT varying with climate and soil conditions for large-
scale simulations (e.g., by gridded parameter sets). Further-
more, there is a need to evaluate and further discretize plant
hydraulic properties (at this point one set of hydraulic pa-
rameters is applied to all types of crops) (Verhoef and Egea,
2014; Kennedy et al., 2017; Kennedy et al., 2019). Within
the crop module of CLM5, the carbon allocation of crops is
limited by soil water available to the plant. Thus, both an
improved soil hydrology and an improved representation of
plant hydraulics could play a major role in improving the
quality of yield prediction by the model (Bassu et al., 2014;
Kennedy et al., 2019). These plant hydraulic properties could
be estimated by inverse modeling or data assimilation (e.g.,
by assimilating measurement data like NEE, LAI, soil mois-

ture, and/or energy fluxes using an augmented state vector
approach). In addition, data assimilation of, e.g., in situ or
remotely sensed soil moisture data and/or LAI, could play a
major role in increasing the accuracy of regional yield pre-
dictions (e.g., Guérif and Duke, 2000; Launay and Guerif,
2005; de Wit and van Diepen, 2007; Fang et al., 2008; Vaz-
ifedoust et al., 2009; Huang et al., 2015; Jin et al., 2018).

The default CLM5 does not account for the influence of
weeds or cover crops and/or their litter on the carbon balance.
There is a tool available for CLM5 that enables the simula-
tion of transient land use and land cover changes (LULCC)
(Lawrence et al., 2018). It was designed to simulate the ef-
fects of changing distributions of natural and crop vegeta-
tion, e.g., land use change from forest to agricultural fields,
and also allows for changes in crop type between years
(Lawrence et al., 2018) but does not account for intra-annual
changes of agricultural management on crop-vegetated areas
that happen in double- and triple-cropping scenarios. While
this tool is useful to study general land use changes by chang-
ing the land cover type of individual land units, we found it
lacks flexibility in accounting for changes within land units
of the same land cover and does not account for all 64 CFTs.
Furthermore, this tool changes the CFT of each column on
1 January every year according to prescribed values (cus-
tomized). Thus, when using the CLM5 land-use change tool,
for example to simulate the crop rotation from sugar beet
in 2017 to winter wheat in 2017/2018 at DE-RuS, winter
wheat would not be planted before fall of 2018 (rather than
in the same year as sugar beet is harvested) resulting in a
long period of fallow field when switching from summer to
winter crop (Fig. 8). Here, the implementation of our cover-
cropping routine enabled a second onset of plant growth
within a year (including the switch to another CFT). This re-
sulted in a pronounced improvement in LAI curves and latent
heat flux, especially during winter months, by simulating the
growth of a cover crop. It also proved to be beneficial in rep-
resenting realistic agricultural field conditions by allowing
crop rotations with higher flexibility than the default model.

This new routine can be used to study cover-cropping sce-
narios in future large-scale simulations. The effect of a cover
crop during winter months on all crop land units where cash
crops are grown in summer could be tested. This could also
be tested for specific cash crops only. In addition, it is possi-
ble to simulate cover crop plantations based on harvest date
thresholds. A defined maximum harvest date for any specific
cash crop could define whether a cover crop such as winter
wheat would be planted or not. For example, for all sugar
beet land units with harvest dates before a certain thresh-
old (e.g., day 290 of any given year) winter wheat could be
planted as a cover crop during winter. If this harvest thresh-
old was not reached and the summer crop is harvested late in
the year, no cover crop would be planted. Alternatively, these
harvest thresholds could define the type of cover crop, e.g.,
early harvest – winter wheat, late harvest – simple green-
ing mix. In addition, historical land use information could
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be used to simulate realistic cover-cropping and crop rota-
tion scenarios. The succession of different crops from his-
torical data could also be used to model the succession of
crops for the future. In order to study large-scale effects of
cover cropping and common crop rotations, the CLM5 model
would greatly benefit from further crop-specific parameter
sets for cover crops such as mustard and further important
cash crops.

In their approach, Lombardozzi et al. (2018) studied the
effects of idealized cover crop scenarios by simulating win-
ter crops in all crop regions throughout North America. They
found that the effects of cover crops on winter temperatures
are strongly related to plant height and LAI and emphasized
the importance of biogeophysical effects and varietal selec-
tion when evaluating the climate mitigation potential of cover
cropping (Lombardozzi et al., 2018). With our new routine,
it is now possible to evaluate the biogeophysical effects of
cover crops over longer timescales and in combination with
typical cash crop rotations throughout agricultural areas. In
addition, the ecological potential of different cover crop vari-
eties could be evaluated. We anticipate that this modification
will allow a more realistic representation of seasonal LAI
in ecosystems where cover cropping and crop rotations are
common management practices. The application of this rou-
tine is also of interest for areas with several cash crop cycles
within a year like the multiple annual crop cycles in India and
China (Biradar and Xiao, 2011; Li et al., 2014; Sharma et al.,
2015). We see further development potential for this routine
and corresponding data sets to account for typical crop ro-
tations and cover-cropping scenarios for regional-scale sim-
ulations (e.g., EU regulations and goals for the adoption of
cover crops for climate change mitigation; Smit et al., 2019).

6 Conclusions

The default CLM5 was extended by adopting the winter
wheat representation of Lu et al. (2017); by including crop-
specific parameterization for winter wheat, sugar beet, and
potatoes; and by the addition of a cover-cropping subroutine
that allows several growth cycles within 1 year. The model
modifications were tested for the respective crops at four
TERENO and ICOS cropland sites in Germany and Belgium,
Selhausen (DE-RuS), Merzenhausen (DE-RuM), Klingen-
berg (DE-Kli), and Lonzée (BE-Lon), for multiple years. The
main results drawn from this study are as follows.

The implementation of the winter wheat subroutines led
to a significant simulation improvement in terms of en-
ergy fluxes, leaf area index, net ecosystem exchange, and
crop yield (reduction of underestimation from 80 %–90 % to
18 %–36 % at test site BE-Lon, a good match for the test sites
DE-RuS and DE-Kli in 2016, and a slight overestimation at
test site DE-Kli in 2011).

The model performance was strongly improved with the
crop-specific parameter sets for sugar beet and potatoes: sea-

sonal variations and magnitudes of energy fluxes and LAI
were better reproduced with RMSE reduction during the crop
cycle by up to 57 % for latent and 59 % for sensible heat flux
at test site DE-RuS.

In most cases the modification of CLM5 led to better re-
production of measured NEE at the test sites. However, the
model showed a general weakness in reasonably simulating
the NEE on agricultural fields, especially the peak value and
post-harvest conditions.

The implementation of our cover-cropping routine enabled
a second onset of plant growth within a year and thus was
able to better capture realistic field conditions after harvest.
Wintertime RMSE for latent heat flux was reduced by 42 %.
In addition, a higher flexibility in terms of crop rotation is
now possible with CLM5.

We anticipate that our implementation of the winter wheat
representation and specified parameterization will markedly
improve yield predictions at regional scale for regions with
a high abundance of winter cereal varieties. The cover-
cropping routine offers an improved basis on which to study
the effects of large-scale cover-cropping on energy fluxes,
soil water storage, and soil carbon and nitrogen pools, as well
as to investigate the role of different cover crops as natural
fertilizer in future studies with CLM5. A more realistic rep-
resentation of post-harvest field conditions can play a crucial
part in better representing the role of agriculture on regional
and global energy and carbon fluxes and will be further de-
veloped and tested for regional-scale simulations in future
studies.

Despite our improvements, there is still a need to further
develop certain functionalities and specific routines regard-
ing the crop representation and land management in CLM5
in order to achieve better model performance for agricultural
land. The applicability of the routines to large-scale simula-
tions would strongly benefit from additional crop-specific pa-
rameterizations for important cash and cover crops. A better
representation of plowing and tillage also needs be included
in future model versions in order to better account for the ef-
fects of cover crops on the terrestrial carbon cycle and their
biogeochemical benefits.

Further general examples for improvements include (1) an
improved representation of plant and soil hydrology that may
be highly beneficial for yield predictions, (2) a more de-
tailed representation of agricultural management practices
(e.g., tillage, C/N turnover, post-harvest surface conditions,
and fertilizer types and applications), (3) tools to account for
spatial variability in plant physiological parameters, and (4)
the discretization of plant hydraulic properties as opposed to
using one parametrization for all crops.
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Appendix A: Winter cereal representation (extended)

The temperature at the crown of the plant (Tcrown) is assumed
to be slightly higher than the 2 m air temperature (T2 m) in
winter when covered by snow and the same as the 2 m air
temperature without snow cover. Within CLM5, it is calcu-
lated separately for temperatures below and above the freez-
ing temperature (Tfrz):

Tcrown = 2+ (T2 m− Tfrz) · (0.4+ 0.0018

· (min(Dsnow · 100, 15)− 15)2)
for T2 m < Tfrz, (A1)

Tcrown = T2 m− Tfrz

for T2 m > Tfrz, (A2)

where Tcrown (K) is the calculated crown temperature, T2 m
(K) is the 2 m air temperature, Tfrz (K) is the freezing point
and Dsnow (m) is the snow height.

The temperature at which 50 % of the plant is damaged
(LT50) is calculated interactively at each time step (LT50t ),
depending on the previous time step (LT50t−1) and on sev-
eral accumulative parameters. These parameters are the ex-
posure to near-lethal temperatures (rates), the stress due to
respiration under snow (rater), the cold hardening or low-
temperature acclimation (contribution of hardening: rateh),
and the loss of hardening due to the exposure to a period of
higher temperatures (dehardening: rated) that are each func-
tions of the crown temperature (Lu et al., 2017, and refer-
ences therein):

LT50t = LT50t − 1− rateh+ rated+ rates+ rater. (A3)

The exposure to near-lethal temperatures is based on the
winter survival model of Fowler et al. (1999) and is calcu-
lated as follows:

rates =
LT50t−1− Tcrown

e−1.9(LT50t−1− Tcrown )−3.74
. (A4)

The stress due to respiration under snow is calculated as a
function of snow depth (dsnow) that ranges from 0 to 1 for
snow cover up to 12.5 cm (equal to 1 for all snow depth
higher than 12.5) and a specific respiration factor (RE):

rater = R ·RE · f (dsnow)

R = 0.54f (dsnow)=min(dsnow,12.5)/12.5

RE=
e0.84+0.051 Tcrown − 2

1.85
. (A5)

The contribution of hardening and dehardening are calcu-
lated within certain temperature ranges as follows:

For Tcrown < 10 ◦C

rateh = 0.0093(10−max(Tcrown,0))
(LT50t−1−LT50c). (A6)

For Tcrown ≥ 10 ◦C when vf< 1 (not fully vernalized) and
Tcrown ≥−4 ◦C when vf= 1 (fully vernalized)

rated = 2.7× 10−5(LT50i −LT50t−1)(Tcrown+ 4)3, (A7)

where LT50c is the maximum frost tolerance of −23 ◦C and
LT50i represents the LT50 for an unacclimated plant (LT50i =

−0.6+ 0.142 LT50c).
The survival rate (fsurv) is then calculated as a function of

LT50 and the crown temperature. The probability of survival
is a function of Tcrown in time (t). It increases once Tcrown is
higher than LT50 and decreases when it is lower (Vico et al.,
2014):

fsurv (Tcrown, t)= 2−
Tcrown
LT50

αsurv

, (A8)

where αsurv is a shape parameter of 4.
The winter killing degree day (WDD) is calculated as

a function of crown temperature and survival probability,
where the maximum function limits the integration to the po-
tentially damaging periods when the air temperature (T ) is
lower than the base temperature (Tbase) of 0 ◦C (Vico et al.,
2014):

WDD=
∫

winter

max[(Tbase− Tcrown),0]

[1− fsurv(Tcrown, t)]dt. (A9)

Lower LT50 indicates a higher frost tolerance and would
result in higher survival rates, smaller WDD and less cold
damage to the plant. Thus, when the survival probability and
crown temperature are low, the WDD will be high (Vico et
al., 2014).

The survival probability and the WDD are then used to es-
timate instant and accumulated frost damage to the crop dur-
ing the leaf-emergence phase (Lu et al., 2017). Instant frost
damage (especially to new leaves or small seedlings) is as-
sumed to happen due to due to an exposure to low temper-
atures the beginning of the growing season when the plants
are not fully vernalized (vf< 0.9). It is simulated by reduc-
ing the leaf carbon at low survival probabilities (whenever
fsurv is below 1). The leaf carbon is reduced by an amount of
5 gC m−2, scaled by a factor of 1− fsurv, which is moved to
the carbon litter pool, up to a minimum value of 10 gC m−2

leaf carbon:

leafct = leafct−1− leafcdamage(1− fsurv)

for vf < 0.9,WDD > 0,fsurv < 1, and leafct > 10, (A10)

where leafct is the simulated leaf carbon of the current time
step, leafct−1 is the leaf carbon of the previous step, and
leafcdamage is equivalent to 5 gC m−2.

When the plant is close to vernalization towards the end of
the leaf-emergence phase, it is not as susceptible to suffering
from instantaneous frost damage as in the beginning of this
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Table A1. Sowing and harvest dates at the ICOS and TERENO cropland study sites.

Site code Site Years Crop Sowing Harvest or plowing
[DD.MM.YYY] [DD.MM.YYY]

DE-RuS Selhausen 2015–2016 Winter barley 29.09.2015 10.07.2016
2016 Greening mix cover crop 22.08.2016 06.01.2017
2017 Sugar beet 31.03.2017 05.10.2017

2017–2018 Winter wheat 25.10.2017 16.07.2018
2019 Potato 26.04.2019 03.10.2019

DE-RuM Merzenhausen 2016 Potato 12.04.2016 24.08.2016
2016–2017 Winter wheat 17.10.2016 22.07.2017
2017–2018 Rapeseed 30.08.2017 16.07.2018

DE-Kli Klingenberg 2003–2004 Winter barley 06.09.2003 31.07.2004
2004–2005 Rapeseed 18.08.2004 02.08.2005
2005–2006 Winter wheat 25.09.2005 06.09.2006

2007 Corn 23.04.2007 02.10.2007
2008–2009 Winter barley 25.04.2008 27.08.2008

12.09.2008 22.07.2009
2009–2010 Rapeseed 25.08.2009 24.08.2010
2010–2011 Winter wheat 02.10.2010 22.08.2011

2012 Corn 25.04.2012 18.09.2012
2013–2014 Winter barley 17.04.2013 24.08.2013

01.10.2013 20.07.2014
2014–2015 Rapeseed 21.08.2014 08.08.2015
2015–2016 Winter wheat 18.09.2015 24.08.2016
2016–2017 Radish and brassica cover crop 01.09.2016 15.03.2017
2017–2018 Winter barley 02.04.2017 25.08.2017
2016–2017 Radish and brassica cover crop 13.09.2017 13.04.2018

2018 Corn 02.05.2018 04.09.2018
2019 Bean 23.03.2019 18.08.2019

BE-Lon Lonzée 2006–2007 Winter wheat 13.10.2006 05.08.2007
2008 Sugar beet 22.04.2008 04.11.2008

2008–2009 Winter wheat 13.11.2008 07.08.2009
2009 Mustard 01.09.2009 01.12.2009
2010 Potato 25.04.2010 05.09.2010

2010–2011 Winter wheat 14.10.2010 16.08.2011
2012 Corn 14.05.2012 13.10.2012

2012–2013 Winter wheat 25.10.2012 12.08.2013
2013 Mustard 05.09.2013 15.11.2013
2014 Potato 07.04.2014 22.08.2014

2014–2015 Winter wheat 15.10.2014 02.08.2015
2015 Mustard 26.08.2015 09.12.2015
2016 Sugar beet 12.04.2016 27.10.2016

2016–2017 Winter wheat 29.10.2016 30.07.2017
2017 Mustard 07.09.2017 08.12.2017
2018 Potato 23.04.2018 11.09.2018

2018–2019 Winter wheat 10.10.2018 01.08.2019

phase. Even so, an extended period of freezing temperatures
can potentially induce damage to the plant (Lu et al., 2017).
This accumulated frost damage is simulated based on the ac-
cumulated WDD and average survival probability. When the
accumulated WDD reaches a value higher than 1◦ d, the leaf
carbon from the previous time step (leafct−1), scaled by the

average fsurv, is moved to the soil carbon litter pool:

leafct = leafct−1(1− averagefsurv)

for vf≥ 0.9 and WDD> 1. (A11)

Once this has occurred, the accumulated WDD is reset to 0
and the tracking of the average fsurv is restated. Correspond-
ing to the leaf carbon reduction, the leaf nitrogen is reduced
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Table A2. Default (control) and new crop-specific (new) phenology and CN allocation parameters for the CFTs sugar beet, potatoes (control
parameters are those for the CFT spring wheat), and winter wheat.

CFT Sugar beet Potatoes Winter wheat

Parameter set Control New Control New Control New

Variable Units Phenology

min_NH_planting_date MM.DD 401 401 401 401 901 901
max_NH_planting_date MM.DD 615 530 615 530 1130 1130
planting_temp K 280.15 280.15 280.15 277.15 1000 1000
min_planting_temp K 272.15 272.15 272.15 272.15 283.15 283.15
gddmin ◦ d 50 60 50 60 50 100
mxmat days 150 180 150 180 330 400
baset ◦ d 0 0 0 0 0 0
mxtmp ◦ C 26 30 26 30 26 26
hybgdd – 1700 2000 1700 2000 1700 2000
lfemerg % 0.05 0.05 0.05 0.05 0.03 0.03
grnfill % 0.6 0.65 0.6 0.65 0.4 0.6
ztopmx m 1.2 0.5 1.2 0.5 1.2 1.2
laimx m2 m−2 7 6 7 6 7 7
slatop m2 gC−1 0.035 0.02 0.035 0.02 0.035 0.028

Variable Units CN ratios and allocation

leafcn gC gN−1 20 11 20 11 20 20
leafcn_min gC gN−1 15 8 15 8 15 15
leafcn_max gC gN−1 35 20 35 20 35 35
frootcn gC gN−1 42 42 42 42 42 43
graincn gC gN−1 50 50 50 50 50 15
flnr fraction per gNm−2 0.41 0.15 0.41 0.15 0.41 0.3

Table A3. Textural fractions (sand, silt, and clay percentages) for the ICOS and TERENO cropland study sites averaged for the upper soil
layers (up to 50 cm) with corresponding reference.

Site/ID Sand (%) Silt (%) Clay (%) Ref.

Selhausen (DE-RuS) 16.4 63.4 14.9 Brogi et al. (2019)
Merzenhausen (DE-RuM) 16.4∗ 63.4∗ 14.9∗ –
Klingenberg (DE-Kli) 21.5 22.8 55.7 Thomas Grünwald (personal communication, 2020)
Lonzée (BE-Lon) 5–10 68–77 18–22 Moureaux et al. (2006)

∗ Adopted from the DE-RuS site

from the leaf nitrogen pool to the soil nitrogen litter pool
scaled with the parameterized leaf C/N ratio for winter wheat
of 20.
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CLM_ WW_CC is freely available via Zenodo,
https://doi.org/10.5281/zenodo.3978092 (Boas, 2020).
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